Advertisements
Advertisements
प्रश्न
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
उत्तर
\[f'\left( x \right) = \frac{d}{dx}\left( \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 \right)\]
\[ = \frac{1}{100}\left( 100 x^{99} \right) + \frac{1}{99}\left( 99 x^{98} \right) + . . . + \frac{1}{2}\left( 2x \right) + 1 + 0\]
\[ = x^{99} + x^{98} + . . . + x + 1\]
\[f'\left( 1 \right) = 1^{99} + 1^{98} + . . . + 1 + 1\]
\[ = 99 + 1\]
\[ = 100\]
\[f'\left( 0 \right) = 0 + 0 + . . . + 0 + 1\]
\[ = 1\]
\[RHS = 100 f'\left( 0 \right)\]
\[ = 100\left( 1 \right)\]
\[ = 100\]
\[ = f'\left( 1 \right)\]
\[ = LHS\]
\[ \therefore f'\left( 1 \right) = 100 f'\left( 0 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of x–3 (5 + 3x).
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of f (x) = 99x at x = 100
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{x + 2}{3x + 5}\]
k xn
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
tan2 x
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
x2 ex log x
logx2 x
x−4 (3 − 4x−5)
(ax + b) (a + d)2
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Find the derivative of x2 cosx.
Find the derivative of f(x) = tan(ax + b), by first principle.
`(a + b sin x)/(c + d cos x)`