हिंदी

For the Function F ( X ) = X 100 100 + X 99 99 + . . . + X 2 2 + X + 1 . - Mathematics

Advertisements
Advertisements

प्रश्न

For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

उत्तर

\[f'\left( x \right) = \frac{d}{dx}\left( \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 \right)\]
\[ = \frac{1}{100}\left( 100 x^{99} \right) + \frac{1}{99}\left( 99 x^{98} \right) + . . . + \frac{1}{2}\left( 2x \right) + 1 + 0\]
\[ = x^{99} + x^{98} + . . . + x + 1\]
\[f'\left( 1 \right) = 1^{99} + 1^{98} + . . . + 1 + 1\]
\[ = 99 + 1\]
\[ = 100\]
\[f'\left( 0 \right) = 0 + 0 + . . . + 0 + 1\]
\[ = 1\]
\[RHS = 100 f'\left( 0 \right)\]
\[ = 100\left( 1 \right)\]
\[ = 100\]
\[ = f'\left( 1 \right)\]
\[ = LHS\]
\[ \therefore f'\left( 1 \right) = 100 f'\left( 0 \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.3 | Q 26 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of x–3 (5 + 3x).


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{x^2 - 1}{x}\]


\[\frac{x + 2}{3x + 5}\]


k xn


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle: 

− x


Differentiate of the following from first principle:

(−x)−1


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


tan2 


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


x2 ex log 


logx2 x


x4 (3 − 4x−5)


(ax + b) (a + d)2


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Find the derivative of x2 cosx.


Find the derivative of f(x) = tan(ax + b), by first principle.


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×