Advertisements
Advertisements
प्रश्न
Find the derivative of x–3 (5 + 3x).
उत्तर
Let f (x) = x– 3 (5 + 3x) ...(1)
Differentiating (1) with respect to x, we get
f'(x) = (x-3) (5 + 3x) + (x-3) (5 + 3x)
= f'(x) = (-3) x-3-1 (5 + 3x) + (x-3) (0 + 3)
= `3x-4 (5 + 3x) + x-3. (3)
= -15x-4 + 9x-3 + 3x-3
= -15x-4 - 6x-3
= `(-15)/x^4 - 6/x^3`
∴ f'(x) = `(-3)/ x^4 (5 + 2x)`
APPEARS IN
संबंधित प्रश्न
Find the derivative of `2x - 3/4`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of f (x) = 99x at x = 100
\[\frac{x^2 + 1}{x}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{x + 2}{3x + 5}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
− x
Differentiate each of the following from first principle:
\[3^{x^2}\]
tan 2x
\[\tan \sqrt{x}\]
x4 − 2 sin x + 3 cos x
cos (x + a)
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x3 sin x
x5 ex + x6 log x
\[e^x \log \sqrt{x} \tan x\]
x5 (3 − 6x−9)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
(ax + b) (a + d)2
(ax + b)n (cx + d)n
\[\frac{x}{1 + \tan x}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{x + \cos x}{\tan x}\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]