हिंदी

Find the derivative of x–3 (5 + 3x). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of x–3 (5 + 3x).

योग

उत्तर

Let f (x) = x– 3 (5 + 3x)     ...(1)

Differentiating (1) with respect to x, we get

f'(x) = (x-3) (5 + 3x) + (x-3) (5 + 3x)

= f'(x) = (-3) x-3-1 (5 + 3x) + (x-3) (0 + 3)

= `3x-4 (5 + 3x) + x-3. (3)

= -15x-4 + 9x-3 + 3x-3

= -15x-4 - 6x-3

= `(-15)/x^4 - 6/x^3`

∴ f'(x) = `(-3)/ x^4 (5 + 2x)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Exercise 13.2 [पृष्ठ ३१३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Exercise 13.2 | Q 9.3 | पृष्ठ ३१३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of `2x - 3/4`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of f (x) = 99x at x = 100 


\[\frac{x^2 + 1}{x}\]


\[\frac{x^2 - 1}{x}\]


\[\frac{x + 2}{3x + 5}\]


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle: 

− x


Differentiate each of the following from first principle:

\[3^{x^2}\]


 tan 2


\[\tan \sqrt{x}\]


x4 − 2 sin x + 3 cos x


cos (x + a)


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x3 sin 


x5 ex + x6 log 


\[e^x \log \sqrt{x} \tan x\] 


x5 (3 − 6x−9


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


(ax + b) (a + d)2


(ax + b)n (cx d)


\[\frac{x}{1 + \tan x}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{3^x}{x + \tan x}\] 


\[\frac{x + \cos x}{\tan x}\] 


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×