Advertisements
Advertisements
प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
उत्तर
Let f(x) = `(px + q) (r/x + s)` ...(i)
Differentiating (i) with respect to x, we get
∴ `d/(dx) (f(x))` = `(px + q). (r/x + s) + (px + q) (r/x + s)`
= `(p + 0) (r/x + s) + (px + q). ((xr' - rx')/(x^2) + 0)`
= `p(r/x + s) + (px + q) ((0 - r)/x^2)`
= `p(r/x + s) - ((px + q)r)/x^2`
= `(pr)/x + ps - (pr)/x - (qr)/x^2`
= `ps - (qr)/x^2`
APPEARS IN
संबंधित प्रश्न
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) = 99x at x = 100
Find the derivative of the following function at the indicated point:
\[\frac{x^2 - 1}{x}\]
\[\frac{1}{\sqrt{3 - x}}\]
x2 + x + 3
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
(−x)−1
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
tan 2x
log3 x + 3 loge x + 2 tan x
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
x3 sin x
sin2 x
logx2 x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x−3 (5 + 3x)
(ax + b)n (cx + d)n
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{x}{\sin^n x}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Find the derivative of f(x) = tan(ax + b), by first principle.