हिंदी

Mark the Correct Alternative in Each of the Following: If Y = Sin X + Cos X Sin X − Cos X Then D Y D X at X = 0 is - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 

विकल्प

  • −2      

  •  0         

  • \[\frac{1}{2}\]

  • does not exist

MCQ

उत्तर

\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] 

Differentiating both sides with respect to x, we get 

\[\frac{dy}{dx} = \frac{\left( \sin x - \cos x \right) \times \frac{d}{dx}\left( \sin x + \cos x \right) - \left( \sin x + \cos x \right) \times \frac{d}{dx}\left( \sin x - \cos x \right)}{\left( \sin x - \cos x \right)^2} \left( \text{ Quotient rule } \right)\]
\[ = \frac{\left( \sin x - \cos x \right) \times \left[ \frac{d}{dx}\left( \sin x \right) + \frac{d}{dx}\left( \cos x \right) \right] - \left( \sin x + \cos x \right) \times \left[ \frac{d}{dx}\left( \sin x \right) - \frac{d}{dx}\left( \cos x \right) \right]}{\left( \sin x - \cos x \right)^2}\]
\[ = \frac{\left( \sin x - \cos x \right)\left( \cos x - \sin x \right) - \left( \sin x + \cos x \right)\left( \cos x + \sin x \right)}{\left( \sin x - \cos x \right)^2}\]
\[ = \frac{- \left( \cos^2 x + \sin^2 x - 2\cos x \sin x \right) - \left( \sin^2 x + \cos^2 x + 2\sin x \cos x \right)}{\left( \sin x - \cos x \right)^2}\]

\[= \frac{- 1 + 2\cos x \sin x - 1 - 2\sin x \cos x}{\left( \sin x - \cos x \right)^2}\]
\[ = \frac{- 2}{\left( \sin x - \cos x \right)^2}\]

Putting x = 0, we get

\[\left( \frac{dy}{dx} \right)_{x = 0} = \frac{- 2}{\left( \sin0 - \cos0 \right)^2} = \frac{- 2}{\left( 0 - 1 \right)^2} = - 2\] 

Thus,

\[\frac{dy}{dx}\] at x = 0 is −2.

Hence, the correct answer is option (a).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.7 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.7 | Q 9 | पृष्ठ ४८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of x–3 (5 + 3x).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{2}{x}\]


\[\frac{1}{\sqrt{x}}\]


\[\frac{1}{\sqrt{3 - x}}\]


\[\sqrt{2 x^2 + 1}\]


x ex


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


\[\tan \sqrt{x}\] 


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


x2 ex log 


sin x cos x


\[\frac{2^x \cot x}{\sqrt{x}}\] 


x2 sin x log 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x4 (3 − 4x−5)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


(ax + b)n (cx d)


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{3^x}{x + \tan x}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×