हिंदी

Find the Derivative of the Following Function at the Indicated Point: Sin 2x at X = π 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]

उत्तर

\[\text{ We have }: \]
\[f'\left( \frac{\pi}{2} \right) = \lim_{h \to 0} \frac{f\left( \frac{\pi}{2} + h \right) - f\left( \frac{\pi}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sin2\left( \frac{\pi}{2} + h \right) - \sin2\left( \frac{\pi}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sin(\pi + 2h) - 0}{h}\]
\[ = \lim_{h \to 0} \frac{- \sin2h}{h} \times \frac{2}{2} \]
\[ = \lim_{h \to 0} - \frac{\sin 2h}{2h} \times 2 \]
\[ = - 2\]
\[\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.1 [पृष्ठ ३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.1 | Q 7.4 | पृष्ठ ३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (xx at x = 1

 


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


\[\frac{x + 2}{3x + 5}\]


k xn


(x + 2)3


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

 eax + b


x ex


Differentiate of the following from first principle:

(−x)−1


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\]


 log3 x + 3 loge x + 2 tan x


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


logx2 x


x3 ex cos 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{1}{a x^2 + bx + c}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×