हिंदी

Find the Derivative of F (X) X at X = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of f (xx at x = 1

 

उत्तर

We have: 

\[f'(x) = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}\]
\[ = \lim_{h \to 0} \frac{1 + h - 1}{h}\]
\[ = \lim_{h \to 0} 1\]
\[ = 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.1 [पृष्ठ ३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.1 | Q 4 | पृष्ठ ३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x at x = 1.


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point:


\[\frac{1}{\sqrt{x}}\]


\[\frac{x^2 - 1}{x}\]


\[\frac{x + 1}{x + 2}\]


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle: 

sin x + cos x


 tan 2


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\] 


\[\frac{2 x^2 + 3x + 4}{x}\] 


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


sin x cos x


(1 − 2 tan x) (5 + 4 sin x)


\[e^x \log \sqrt{x} \tan x\] 


(2x2 − 3) sin 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×