Advertisements
Advertisements
प्रश्न
Write the derivative of f (x) = 3 |2 + x| at x = −3.
उत्तर
\[\text{ Let } x = -3\]
\[\text{ We know }:\]
\[-3<-2\]
\[\text{ Thus, we have }:\]
\[x<-2\]
\[\text{ It gives } x+2<0.\]
\[ \therefore \left| 2 + x \right| = \left| x + 2 \right| = - \left( x + 2 \right) = - x - 2\]
\[f\left( x \right) = 3 \left| 2 + x \right| = 3\left( - x - 2 \right) = - 3x - 6\]
\[f'\left( x \right) = - 3\frac{d}{dx}\left( x \right) - \frac{d}{dx}\left( 6 \right) = - 3\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of the following function at the indicated point:
\[\frac{2}{x}\]
\[\frac{1}{\sqrt{x}}\]
(x + 2)3
Differentiate of the following from first principle:
− x
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
tan 2x
x4 − 2 sin x + 3 cos x
2 sec x + 3 cot x − 4 tan x
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
cos (x + a)
x3 sin x
sin x cos x
(1 +x2) cos x
x−4 (3 − 4x−5)
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
(ax + b) (a + d)2
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to