Advertisements
Advertisements
प्रश्न
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
उत्तर
\[\text{ Case } 1: x>0\]
\[\left| x \right| = x\]
\[f\left( x \right) = \frac{x^2}{\left| x \right|} = \frac{x^2}{x} = x\]
\[f'\left( x \right) = 1\]
\[\text{ Case } 2: x<0\]
\[\left| x \right| = - x\]
\[f\left( x \right) = \frac{x^2}{\left| x \right|} = \frac{x^2}{- x} = - x\]
\[f'\left( x \right) = - 1\]
\[\text{ From case 1 and case 2, we have }:\]
`f'(x)={(1, if, x > 0),(-1, if, x < 0):}`
APPEARS IN
संबंधित प्रश्न
Find the derivative of 99x at x = 100.
Find the derivative of x at x = 1.
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = tan x at x = 0
\[\frac{2}{x}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{x + 1}{x + 2}\]
(x2 + 1) (x − 5)
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
tan (2x + 1)
tan 2x
x4 − 2 sin x + 3 cos x
3x + x3 + 33
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
(2x2 + 1) (3x + 2)
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
cos (x + a)
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
(x3 + x2 + 1) sin x
sin2 x
\[\frac{x}{1 + \tan x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{1}{a x^2 + bx + c}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Find the derivative of x2 cosx.
(ax2 + cot x)(p + q cos x)