Advertisements
Advertisements
प्रश्न
(2x2 + 1) (3x + 2)
उत्तर
\[\frac{d}{dx}\left( \left( 2 x^2 + 1 \right)\left( 3x + 2 \right) \right)\]
\[ = \frac{d}{dx}\left( 6 x^3 + 4 x^2 + 3x + 2 \right)\]
\[ = 6\frac{d}{dx}\left( x^3 \right) + 4\frac{d}{dx}\left( x^2 \right) + 3\frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( 2 \right)\]
\[ = 6\left( 3 x^2 \right) + 4\left( 2x \right) + 3\left( 1 \right) + 0\]
\[ = 18 x^2 + 8x + 3\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of 99x at x = 100.
Find the derivative of `2x - 3/4`
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) = cos x at x = 0
Find the derivative of f (x) = tan x at x = 0
\[\frac{2}{x}\]
\[\frac{1}{x^3}\]
k xn
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
(−x)−1
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x2 ex log x
xn tan x
x2 sin x log x
x5 ex + x6 log x
(x sin x + cos x ) (ex + x2 log x)
x−4 (3 − 4x−5)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
(ax + b) (a + d)2
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{x}{\sin^n x}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
(ax2 + cot x)(p + q cos x)