Advertisements
Advertisements
प्रश्न
(2x2 + 1) (3x + 2)
उत्तर
\[\frac{d}{dx}\left( \left( 2 x^2 + 1 \right)\left( 3x + 2 \right) \right)\]
\[ = \frac{d}{dx}\left( 6 x^3 + 4 x^2 + 3x + 2 \right)\]
\[ = 6\frac{d}{dx}\left( x^3 \right) + 4\frac{d}{dx}\left( x^2 \right) + 3\frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( 2 \right)\]
\[ = 6\left( 3 x^2 \right) + 4\left( 2x \right) + 3\left( 1 \right) + 0\]
\[ = 18 x^2 + 8x + 3\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of 99x at x = 100.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
\[\frac{2}{x}\]
\[\frac{1}{x^3}\]
\[\frac{x + 1}{x + 2}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
sin x + cos x
log3 x + 3 loge x + 2 tan x
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
x5 ex + x6 log x
logx2 x
\[e^x \log \sqrt{x} \tan x\]
x4 (5 sin x − 3 cos x)
x5 (3 − 6x−9)
x−4 (3 − 4x−5)
(ax + b)n (cx + d)n
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{3^x}{x + \tan x}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Find the derivative of x2 cosx.
(ax2 + cot x)(p + q cos x)