मराठी

log ( 1 √ x ) + 5 x a − 3 a x + 3 √ x 2 + 6 4 √ x − 3 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 

उत्तर

\[\frac{d}{dx}\left( \log \left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}} \right)\]
\[ = \frac{d}{dx}\left[ log \left( x^\frac{- 1}{2} \right) \right] + 5\frac{d}{dx}\left( x^a \right) - 3\frac{d}{dx}\left( a^x \right) + \frac{d}{dx}\left( x^\frac{2}{3} \right) + 6\frac{d}{dx}\left( x^\frac{- 3}{4} \right)\]
\[ = \frac{d}{dx}\left( \frac{- 1}{2}\log x \right) + 5\frac{d}{dx}\left( x^a \right) - 3\frac{d}{dx}\left( a^x \right) + \frac{d}{dx}\left( x^\frac{2}{3} \right) + 6\frac{d}{dx}\left( x^\frac{- 3}{4} \right)\]
\[ = \frac{- 1}{2} . \frac{1}{x} + 5a x^{a - 1} - 3 a^x \log a + \frac{2}{3} x^\frac{- 1}{3} + 6\left( \frac{- 3}{4} \right) x^\frac{- 7}{4} \]
\[ = \frac{- 1}{2x} + 5a x^{a - 1} - 3 a^x \log a + \frac{2}{3} x^\frac{- 1}{3} - \frac{9}{2} x^\frac{- 7}{4} \]
\[\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.3 | Q 16 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x–3 (5 + 3x).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{1}{x^3}\]


\[\frac{x^2 + 1}{x}\]


 (x2 + 1) (x − 5)


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

e3x


x ex


Differentiate of the following from first principle:

(−x)−1


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


\[\sin \sqrt{2x}\]


3x + x3 + 33


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


2 sec x + 3 cot x − 4 tan x


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


x3 e


xn tan 


(x sin x + cos x) (x cos x − sin x


(2x2 − 3) sin 


x5 (3 − 6x−9


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×