Advertisements
Advertisements
प्रश्न
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
उत्तर
\[ = \frac{d}{dx}\left[ log \left( x^\frac{- 1}{2} \right) \right] + 5\frac{d}{dx}\left( x^a \right) - 3\frac{d}{dx}\left( a^x \right) + \frac{d}{dx}\left( x^\frac{2}{3} \right) + 6\frac{d}{dx}\left( x^\frac{- 3}{4} \right)\]
\[ = \frac{d}{dx}\left( \frac{- 1}{2}\log x \right) + 5\frac{d}{dx}\left( x^a \right) - 3\frac{d}{dx}\left( a^x \right) + \frac{d}{dx}\left( x^\frac{2}{3} \right) + 6\frac{d}{dx}\left( x^\frac{- 3}{4} \right)\]
\[ = \frac{- 1}{2} . \frac{1}{x} + 5a x^{a - 1} - 3 a^x \log a + \frac{2}{3} x^\frac{- 1}{3} + 6\left( \frac{- 3}{4} \right) x^\frac{- 7}{4} \]
\[ = \frac{- 1}{2x} + 5a x^{a - 1} - 3 a^x \log a + \frac{2}{3} x^\frac{- 1}{3} - \frac{9}{2} x^\frac{- 7}{4} \]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x–3 (5 + 3x).
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) = 99x at x = 100
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{1}{x^3}\]
\[\frac{x^2 + 1}{x}\]
(x2 + 1) (x − 5)
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
e3x
x ex
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
\[\sin \sqrt{2x}\]
3x + x3 + 33
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
2 sec x + 3 cot x − 4 tan x
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
x3 ex
xn tan x
(x sin x + cos x) (x cos x − sin x)
(2x2 − 3) sin x
x5 (3 − 6x−9)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{1}{a x^2 + bx + c}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is