Advertisements
Advertisements
प्रश्न
Differentiate of the following from first principle:
e3x
उत्तर
\[\frac{d}{dx}\left( e^{3x} \right) = \lim_{h \to 0} \frac{e^{3(x + h)} - e^{3x}}{h}\]
\[ = \lim_{h \to 0} \frac{e^{3x} e^{3h} - e^{3x}}{h}\]
\[ = \lim_{h \to 0} \frac{e^{3x} \left( e^{3h} - 1 \right)}{3h}\]
\[ = 3 e^{3x} \lim_{h \to 0} \frac{e^{3h} - 1}{3h}\]
\[ = 3 e^{3x} \left( 1 \right)\]
\[ = 3 e^{3x}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x at x = 1.
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function at the indicated point:
x2 + x + 3
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
eax + b
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\sqrt{\tan x}\]
\[\tan \sqrt{x}\]
3x + x3 + 33
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
x3 sin x
x2 ex log x
(x sin x + cos x ) (ex + x2 log x)
(1 +x2) cos x
x−3 (5 + 3x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to