Advertisements
Advertisements
प्रश्न
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
पर्याय
1
\[\frac{1}{2}\]
\[\frac{1}{\sqrt{2}}\]
0
उत्तर
\[y = \sqrt{x} + \frac{1}{\sqrt{x}}\]
\[ = x^\frac{1}{2} + x^{- \frac{1}{2}}\]
Differentiating both sides with respect to x, we get
\[\frac{dy}{dx} = \frac{d}{dx}\left( x^\frac{1}{2} + x^{- \frac{1}{2}} \right)\]
\[ = \frac{d}{dx}\left( x^\frac{1}{2} \right) + \frac{d}{dx}\left( x^{- \frac{1}{2}} \right)\]
\[ = \frac{1}{2} x^\frac{1}{2} - 1 + \left( - \frac{1}{2} \right) x^{- \frac{1}{2} - 1} \left( y = x^n \Rightarrow \frac{dy}{dx} = n x^{n - 1} \right)\]
\[ = \frac{1}{2} x^{- \frac{1}{2}} - \frac{1}{2} x^{- \frac{3}{2}}\]
Putting x = 1, we get
\[\left( \frac{dy}{dx} \right)_{x = 1} = \frac{1}{2} \times 1 - \frac{1}{2} \times 1 = 0\]
Thus, \[\frac{dy}{dx}\] 1 is 0.
Hence, the correct answer is option (d).
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of x at x = 1.
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = tan x at x = 0
(x2 + 1) (x − 5)
\[\sqrt{2 x^2 + 1}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
tan (2x + 1)
tan 2x
\[\sin \sqrt{2x}\]
x4 − 2 sin x + 3 cos x
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x3 ex
(x sin x + cos x) (x cos x − sin x)
(1 +x2) cos x
x5 (3 − 6x−9)
x−4 (3 − 4x−5)
(ax + b)n (cx + d)n
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{x}{\sin^n x}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Find the derivative of f(x) = tan(ax + b), by first principle.
(ax2 + cot x)(p + q cos x)
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.