मराठी

Mark the Correct Alternative in of the Following: If Y = √ X + 1 √ X Then D Y D X at X = 1 is - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is

पर्याय

  •  1   

  • \[\frac{1}{2}\] 

  • \[\frac{1}{\sqrt{2}}\]

  • 0

MCQ

उत्तर

\[y = \sqrt{x} + \frac{1}{\sqrt{x}}\]
\[ = x^\frac{1}{2} + x^{- \frac{1}{2}}\] 

Differentiating both sides with respect to x, we get 

\[\frac{dy}{dx} = \frac{d}{dx}\left( x^\frac{1}{2} + x^{- \frac{1}{2}} \right)\]
\[ = \frac{d}{dx}\left( x^\frac{1}{2} \right) + \frac{d}{dx}\left( x^{- \frac{1}{2}} \right)\]
\[ = \frac{1}{2} x^\frac{1}{2} - 1 + \left( - \frac{1}{2} \right) x^{- \frac{1}{2} - 1} \left( y = x^n \Rightarrow \frac{dy}{dx} = n x^{n - 1} \right)\]
\[ = \frac{1}{2} x^{- \frac{1}{2}} - \frac{1}{2} x^{- \frac{3}{2}}\]

Putting x = 1, we get

\[\left( \frac{dy}{dx} \right)_{x = 1} = \frac{1}{2} \times 1 - \frac{1}{2} \times 1 = 0\]

Thus, \[\frac{dy}{dx}\] 1 is 0.
Hence, the correct answer is option (d).

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.7 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.7 | Q 6 | पृष्ठ ४८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of x at x = 1.


Find the derivative of x–3 (5 + 3x).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of (x) = tan x at x = 0 


 (x2 + 1) (x − 5)


\[\sqrt{2 x^2 + 1}\]


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


tan (2x + 1) 


 tan 2


\[\sin \sqrt{2x}\]


x4 − 2 sin x + 3 cos x


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x3 e


(x sin x + cos x) (x cos x − sin x


(1 +x2) cos x


x5 (3 − 6x−9


x4 (3 − 4x−5)


(ax + b)n (cx d)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{x}{\sin^n x}\]


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Find the derivative of f(x) = tan(ax + b), by first principle.


(ax2 + cot x)(p + q cos x)


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×