Advertisements
Advertisements
प्रश्न
tan (2x + 1)
उत्तर
\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\tan \left( 2x + 2h + 1 \right) - \tan \left( 2x + 1 \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{sin \left( 2x + 2h + 1 \right)}{\cos \left( 2x + 2h + 1 \right)} - \frac{\sin \left( 2x + 1 \right)}{\cos \left( 2x + 1 \right)}}{h}\]
\[ = \lim_{h \to 0} \frac{sin \left( 2x + 2h + 1 \right) \cos \left( 2x + 1 \right) - \cos \left( 2x + 2h + 1 \right) \sin \left( 2x + 1 \right)}{h \cos \left( 2x + 2h + 1 \right) \cos \left( 2x + 1 \right)}\]
\[ = \lim_{h \to 0} \frac{\sin \left( 2x + 2h + 1 - 2x - 1 \right)}{h \cos \left( 2x + 2h + 1 \right) \cos \left( 2x + 1 \right)}\]
\[ = \frac{1}{\cos \left( 2x + 1 \right)} \lim_{h \to 0} \frac{\sin \left( 2h \right)}{2h} \times 2 \lim_{h \to 0} \frac{1}{\cos \left( 2x + 2h + 1 \right)}\]
\[ = \frac{1}{\cos \left( 2x + 1 \right)} \times 2 \times \frac{1}{\cos \left( 2x + 1 \right)}\]
\[ = \frac{2}{\cos^2 \left( 2x + 1 \right)}\]
\[ = 2 \sec^2 \left( 2x + 1 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of `2x - 3/4`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) x at x = 1
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{1}{x^3}\]
\[\frac{x^2 - 1}{x}\]
x2 + x + 3
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
sin x + cos x
\[\sin \sqrt{2x}\]
\[\cos \sqrt{x}\]
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{2 x^2 + 3x + 4}{x}\]
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
sin2 x
x3 ex cos x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{x}{1 + \tan x}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
`(a + b sin x)/(c + d cos x)`