मराठी

Tan (2x + 1) - Mathematics

Advertisements
Advertisements

प्रश्न

tan (2x + 1) 

उत्तर

\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\tan \left( 2x + 2h + 1 \right) - \tan \left( 2x + 1 \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{sin \left( 2x + 2h + 1 \right)}{\cos \left( 2x + 2h + 1 \right)} - \frac{\sin \left( 2x + 1 \right)}{\cos \left( 2x + 1 \right)}}{h}\]
\[ = \lim_{h \to 0} \frac{sin \left( 2x + 2h + 1 \right) \cos \left( 2x + 1 \right) - \cos \left( 2x + 2h + 1 \right) \sin \left( 2x + 1 \right)}{h \cos \left( 2x + 2h + 1 \right) \cos \left( 2x + 1 \right)}\]
\[ = \lim_{h \to 0} \frac{\sin \left( 2x + 2h + 1 - 2x - 1 \right)}{h \cos \left( 2x + 2h + 1 \right) \cos \left( 2x + 1 \right)}\]
\[ = \frac{1}{\cos \left( 2x + 1 \right)} \lim_{h \to 0} \frac{\sin \left( 2h \right)}{2h} \times 2 \lim_{h \to 0} \frac{1}{\cos \left( 2x + 2h + 1 \right)}\]
\[ = \frac{1}{\cos \left( 2x + 1 \right)} \times 2 \times \frac{1}{\cos \left( 2x + 1 \right)}\]
\[ = \frac{2}{\cos^2 \left( 2x + 1 \right)}\]
\[ = 2 \sec^2 \left( 2x + 1 \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 4.2 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of `2x - 3/4`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{1}{x^3}\]


\[\frac{x^2 - 1}{x}\]


 x2 + x + 3


Differentiate of the following from first principle:

(−x)−1


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle: 

sin x + cos x


\[\sin \sqrt{2x}\]


\[\cos \sqrt{x}\]


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


sin2 


x3 ex cos 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{x}{1 + \tan x}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×