मराठी

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): sinn x - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x

बेरीज

उत्तर

Let y = sinn x.

Accordingly, for n = 1, y = sin x

∴ `(dy)/(dx) = cos x` i.e. `(dy)/(dx) = sin x = cos x`

For n = 2, y = sin2 x

∴ `(dy)/(dx) = (d)/(dx) (sin x sin x)`

= (sin x)' sinx + sin x (sin x)'      [By Leibnitz product rule]

= cos x sin x + sin x cos x

= 2 sin x cos x    ...(1)

For n = 3, y = sin3 x

∴ `(dy)/(dx) = (d)/(dx) (sin x sin^2 x)`

= (sin x)' sinx2 + sin x (sin2 x)       [By Leibnitz product rule]

= cos x sin2 x + sin x (2 sin x cos x)     [Using (1)]

= cos x sin2 x 2 sin2 x cos x

= 3 sin2 x cos x

We assert that `d/dx (sin ^n x) = n sin ^(n - 1) x cos x`

Let our assertion be true for n = k.

i.e., `d/dx (sin ^k x) = k sin ^((k - 1)) x cos x`       ...(2)

Consider

`d/dx (sin^(k + 1) x)` = `d/dx (sin x sin^k x)`      

= (sin x)' sinxk x + sin x (sink x)                   [By Leibnitz product rule]

= cos x sink x + sin x (k sin(k - 1) x cos x)       [Using (2)]

= cos x sink x  + k sink x cos x

= (k + 1) sink x cos x

Thus, our assertion is true for n = k + 1.

Hence, by mathematical induction, `d/dx(sin^n x)`= n sin(n - 1) x cos x

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Miscellaneous Exercise [पृष्ठ ३१८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Miscellaneous Exercise | Q 19 | पृष्ठ ३१८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{2}{x}\]


\[\frac{x + 1}{x + 2}\]


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


 log3 x + 3 loge x + 2 tan x


\[\frac{2 x^2 + 3x + 4}{x}\] 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x3 sin 


x3 e


xn tan 


sin x cos x


\[\frac{2^x \cot x}{\sqrt{x}}\] 


x5 ex + x6 log 


(x sin x + cos x) (x cos x − sin x


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{3^x}{x + \tan x}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Find the derivative of 2x4 + x.


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×