मराठी

Differentiate Each of the Following from First Principle: 3 X 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate each of the following from first principle:

\[3^{x^2}\]

उत्तर

\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
`\frac{d}{dx}\left( 3^{x^2} \right) = \lim_{h \to 0} \frac{3^\left( x + h \right)^2 - 3^{x^2}}{h}`
\[ = \lim_{h \to 0} \frac{3^{x^2 + 2xh + h^2} - 3^{x^2}}{h}\]
\[ = \lim_{h \to 0} \frac{3^{x^2} \left( 3^{x^2 + 2xh + h^2 - x^2} - 1 \right)}{h} \times \frac{\left( h + 2x \right)}{\left( h + 2x \right)}\]
\[ = 3^{x^2} \lim_{h \to 0} \frac{3^{h\left( h + 2x \right)} - 1}{h\left( h + 2x \right)} \lim_{h \to 0} \left( h + 2x \right)\]
\[ = 3^{x^2} \log 3 \left( 2x \right)\]
\[ = 2x 3^{x^2} \log 3\]
\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 3.12 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


tan2 


 tan 2


\[\sqrt{\tan x}\]


\[\sin \sqrt{2x}\]


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x3 e


x2 ex log 


(x sin x + cos x ) (ex + x2 log x


logx2 x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{x}{1 + \tan x}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Find the derivative of f(x) = tan(ax + b), by first principle.


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×