मराठी

e x 1 + x 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{e^x}{1 + x^2}\] 

उत्तर

\[\text{ Let } u = e^x ; v = 1 + x^2 \]
\[\text{ Then }, u' = e^x ; v' = 2x\]
\[\text{ Using the chain rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{e^x}{1 + x^2} \right) = \frac{\left( 1 + x^2 \right) e^x - e^x \left( 2x \right)}{\left( 1 + x^2 \right)^2}\]
\[ = \frac{e^x + x^2 e^x - 2x e^x}{\left( 1 + x^2 \right)^2}\]
\[ = \frac{e^x \left( 1 + x^2 - 2x \right)}{\left( 1 + x^2 \right)^2}\]
\[ = \frac{e^x \left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2}\]
\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.5 | Q 8 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of x–3 (5 + 3x).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of f (x) = 99x at x = 100 


\[\frac{1}{\sqrt{x}}\]


\[\frac{x^2 - 1}{x}\]


\[\frac{1}{\sqrt{3 - x}}\]


 (x2 + 1) (x − 5)


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle:

sin (2x − 3)


tan2 


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


2 sec x + 3 cot x − 4 tan x


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x2 ex log 


x5 ex + x6 log 


(1 − 2 tan x) (5 + 4 sin x)


(1 +x2) cos x


x3 ex cos 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{x + \cos x}{\tan x}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×