Advertisements
Advertisements
प्रश्न
\[\frac{e^x}{1 + x^2}\]
उत्तर
\[\text{ Let } u = e^x ; v = 1 + x^2 \]
\[\text{ Then }, u' = e^x ; v' = 2x\]
\[\text{ Using the chain rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{e^x}{1 + x^2} \right) = \frac{\left( 1 + x^2 \right) e^x - e^x \left( 2x \right)}{\left( 1 + x^2 \right)^2}\]
\[ = \frac{e^x + x^2 e^x - 2x e^x}{\left( 1 + x^2 \right)^2}\]
\[ = \frac{e^x \left( 1 + x^2 - 2x \right)}{\left( 1 + x^2 \right)^2}\]
\[ = \frac{e^x \left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2}\]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) = 99x at x = 100
\[\frac{1}{\sqrt{x}}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{1}{\sqrt{3 - x}}\]
(x2 + 1) (x − 5)
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
sin (2x − 3)
tan2 x
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
2 sec x + 3 cot x − 4 tan x
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x2 ex log x
x5 ex + x6 log x
(1 − 2 tan x) (5 + 4 sin x)
(1 +x2) cos x
x3 ex cos x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{x + \cos x}{\tan x}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]