Advertisements
Advertisements
प्रश्न
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
उत्तर
\[ {\text{ Product rule } (1}^{st} \text{ method }):\]
\[\text{ Let } u = 3 \sec x - 4 \cos ec x; v = - 2 \sin x + 5 \cos x\]
\[\text{ Then }, u' = 3 \sec x \tan x + 4 cos ec x \cot x; v' = - 2 \cos x - 5 \sin x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left[ \left( 3 sec x - 4 \cos ec x \right)\left( - 2 \sin x + 5 \cos x \right) \right] = \left( 3 sec x - 4 \cosec x \right)\left( - 2 \cos x - 5 \sin x \right) + \left( - 2 \sin x + 5 \cos x \right)\left( 3 \sec x \tan x + 4 \cosec x cot x \right)\]
\[ = - 6 + 15 \tan x + 8 \cot x + 20 - 6 \tan^2 x - 8 cot x - 15 \tan x + 20 \cot^2 x\]
\[ = - 6 + 20 - 6\left( \sec^2 x - 1 \right) + 20 \left( {cosec}^2 x - 1 \right)\]
\[ = - 6 + 20 - 6 \sec^2 x + 6 + 20 {cosec}^2 x - 20\]
\[ = - 6 \sec^2 x + 20 \cos e c^2 x\]
\[ 2^{nd} method:\]
\[\frac{d}{dx}\left[ \left( 3 sec x - 4 \cos ec x \right)\left( - 2 \sin x + 5 \cos x \right) \right] = \frac{d}{dx}\left( - 6 \sec x \sin x + 15 \sec x \cos x + 8 \cos ec x \sin x - 20 \cos ec x \cos x \right)\]
\[ = \frac{d}{dx}\left( - 6 \frac{\sin x}{\cos x} + 15\frac{\cos x}{\cos x} + 8 \frac{\sin x}{\sin x} - 20 \frac{\cos x}{\sin x} \right)\]
\[ = \frac{d}{dx}\left( - 6 \tan x + 15 + 8 - 20 \cot x \right)\]
\[ = \frac{d}{dx}\left( - 6\tan x - 20 \cot x + 23 \right)\]
\[ = - 6 \sec^2 x + 20 \cos e c^2 x\]
\[\text{ Using both the methods, we get the same answer }.\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) = cos x at x = 0
\[\frac{1}{x^3}\]
\[\frac{x^2 - 1}{x}\]
k xn
\[\frac{1}{\sqrt{3 - x}}\]
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
tan2 x
\[\sin \sqrt{2x}\]
log3 x + 3 loge x + 2 tan x
2 sec x + 3 cot x − 4 tan x
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
cos (x + a)
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
x2 ex log x
xn tan x
sin x cos x
x5 ex + x6 log x
sin2 x
logx2 x
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{x + \cos x}{\tan x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Find the derivative of x2 cosx.