मराठी

Differentiate Each of the Following Functions by the Product Rule and the Other Method and Verify that Answer from Both the Methods is the Same. (3 Sec X − 4 Cosec X) (−2 Sin X + 5 Cos X) - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)

उत्तर

\[ {\text{ Product rule } (1}^{st} \text{ method }):\]
\[\text{ Let } u = 3 \sec x - 4 \cos ec x; v = - 2 \sin x + 5 \cos x\]
\[\text{ Then }, u' = 3 \sec x \tan x + 4 cos ec x \cot x; v' = - 2 \cos x - 5 \sin x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left[ \left( 3 sec x - 4 \cos ec x \right)\left( - 2 \sin x + 5 \cos x \right) \right] = \left( 3 sec x - 4 \cosec x \right)\left( - 2 \cos x - 5 \sin x \right) + \left( - 2 \sin x + 5 \cos x \right)\left( 3 \sec x \tan x + 4 \cosec x cot x \right)\]
\[ = - 6 + 15 \tan x + 8 \cot x + 20 - 6 \tan^2 x - 8 cot x - 15 \tan x + 20 \cot^2 x\]
\[ = - 6 + 20 - 6\left( \sec^2 x - 1 \right) + 20 \left( {cosec}^2 x - 1 \right)\]
\[ = - 6 + 20 - 6 \sec^2 x + 6 + 20 {cosec}^2 x - 20\]
\[ = - 6 \sec^2 x + 20 \cos e c^2 x\]
\[ 2^{nd} method:\]
\[\frac{d}{dx}\left[ \left( 3 sec x - 4 \cos ec x \right)\left( - 2 \sin x + 5 \cos x \right) \right] = \frac{d}{dx}\left( - 6 \sec x \sin x + 15 \sec x \cos x + 8 \cos ec x \sin x - 20 \cos ec x \cos x \right)\]
\[ = \frac{d}{dx}\left( - 6 \frac{\sin x}{\cos x} + 15\frac{\cos x}{\cos x} + 8 \frac{\sin x}{\sin x} - 20 \frac{\cos x}{\sin x} \right)\]
\[ = \frac{d}{dx}\left( - 6 \tan x + 15 + 8 - 20 \cot x \right)\]
\[ = \frac{d}{dx}\left( - 6\tan x - 20 \cot x + 23 \right)\]
\[ = - 6 \sec^2 x + 20 \cos e c^2 x\]
\[\text{ Using both the methods, we get the same answer }.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.4 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.4 | Q 26.3 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x2 – 2 at x = 10.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (x) = cos x at x = 0


\[\frac{1}{x^3}\]


\[\frac{x^2 - 1}{x}\]


k xn


\[\frac{1}{\sqrt{3 - x}}\]


 (x2 + 1) (x − 5)


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


tan2 


\[\sin \sqrt{2x}\]


 log3 x + 3 loge x + 2 tan x


2 sec x + 3 cot x − 4 tan x


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


cos (x + a)


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


x2 ex log 


xn tan 


sin x cos x


x5 ex + x6 log 


sin2 


logx2 x


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{x + \cos x}{\tan x}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Find the derivative of x2 cosx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×