Advertisements
Advertisements
प्रश्न
(ax + b) (a + d)2
उत्तर
\[(ax + b)(a + d )^2 \]
\[\text{ Let } u = ax + b, v = \left( a + d \right)^2 \]
\[\text{ Then }, u' = a, v' = 0\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = u v' + v u'\]
\[\frac{d}{dx}\left( (ax + b)(a + d )^2 \right) = (ax + b) \times 0 + \left( a + d \right)^2 \times a\]
\[ \therefore \frac{d}{dx}\left( (ax + b)(a + d )^2 \right) = a \left( a + d \right)^2\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x at x = 1.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of f (x) = cos x at x = 0
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 + 1}{x}\]
\[\frac{x + 1}{x + 2}\]
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
e3x
x ex
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[3^{x^2}\]
tan2 x
\[\sin \sqrt{2x}\]
\[\tan \sqrt{x}\]
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
x2 ex log x
(x sin x + cos x ) (ex + x2 log x)
logx2 x
(2x2 − 3) sin x
x−3 (5 + 3x)
\[\frac{x}{1 + \tan x}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Find the derivative of 2x4 + x.