मराठी

Mark the Correct Alternative in of the Following: If Y = 1 + 1 X 2 1 − 1 X 2 Then D Y D X = - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 

पर्याय

  • \[- \frac{4x}{\left( x^2 - 1 \right)^2}\]

  • \[- \frac{4x}{x^2 - 1}\]

  • \[\frac{1 - x^2}{4x}\]

  • \[\frac{4x}{x^2 - 1}\] 

MCQ

उत्तर

\[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\]
\[ = \frac{x^2 + 1}{x^2 - 1}\]

Differentiating both sides with respect to x, we get

\[\frac{dy}{dx} = \frac{\left( x^2 - 1 \right) \times \frac{d}{dx}\left( x^2 + 1 \right) - \left( x^2 + 1 \right) \times \frac{d}{dx}\left( x^2 - 1 \right)}{\left( x^2 - 1 \right)^2} \left( \text{ Quotient rule } \right)\]
\[ = \frac{\left( x^2 - 1 \right) \times \left( 2x + 0 \right) - \left( x^2 + 1 \right) \times \left( 2x - 0 \right)}{\left( x^2 - 1 \right)^2}\]
\[ = \frac{2 x^3 - 2x - 2 x^3 - 2x}{\left( x^2 - 1 \right)^2}\]
\[ = \frac{- 4x}{\left( x^2 - 1 \right)^2}\]

Hence, the correct answer is option (a).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.7 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.7 | Q 5 | पृष्ठ ४८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (xx at x = 1

 


\[\frac{2}{x}\]


\[\frac{1}{x^3}\]


(x + 2)3


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle:

x2 e


 tan 2


\[\sqrt{\tan x}\]


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


xn tan 


logx2 x


(2x2 − 3) sin 


x4 (3 − 4x−5)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


(ax + b) (a + d)2


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{x}{1 + \tan x}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×