Advertisements
Advertisements
प्रश्न
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
पर्याय
\[- \frac{4x}{\left( x^2 - 1 \right)^2}\]
\[- \frac{4x}{x^2 - 1}\]
\[\frac{1 - x^2}{4x}\]
\[\frac{4x}{x^2 - 1}\]
उत्तर
\[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\]
\[ = \frac{x^2 + 1}{x^2 - 1}\]
Differentiating both sides with respect to x, we get
\[\frac{dy}{dx} = \frac{\left( x^2 - 1 \right) \times \frac{d}{dx}\left( x^2 + 1 \right) - \left( x^2 + 1 \right) \times \frac{d}{dx}\left( x^2 - 1 \right)}{\left( x^2 - 1 \right)^2} \left( \text{ Quotient rule } \right)\]
\[ = \frac{\left( x^2 - 1 \right) \times \left( 2x + 0 \right) - \left( x^2 + 1 \right) \times \left( 2x - 0 \right)}{\left( x^2 - 1 \right)^2}\]
\[ = \frac{2 x^3 - 2x - 2 x^3 - 2x}{\left( x^2 - 1 \right)^2}\]
\[ = \frac{- 4x}{\left( x^2 - 1 \right)^2}\]
Hence, the correct answer is option (a).
APPEARS IN
संबंधित प्रश्न
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) x at x = 1
\[\frac{2}{x}\]
\[\frac{1}{x^3}\]
(x + 2)3
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
x2 ex
tan 2x
\[\sqrt{\tan x}\]
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
xn tan x
logx2 x
(2x2 − 3) sin x
x−4 (3 − 4x−5)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
(ax + b) (a + d)2
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{x}{1 + \tan x}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]