मराठी

X Sin X 1 + Cos X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{x \sin x}{1 + \cos x}\]

उत्तर

\[\text{ Let } u = x \sin x; v = 1 + \cos x\]
\[\text{ Then }, u' = x \cos x + \sin x; v' = - \sin x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x \sin x}{1 + \cos x} \right) = \frac{\left( 1 + \cos x \right)\left( x \cos x + \sin x \right) - x \sin x\left( - \sin x \right)}{\left( 1 + \cos x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)\left( x \cos x + \sin x \right) + x \sin^2 x}{\left( 1 + \cos x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)\left( x \cos x + \sin x \right) + x \left( 1 - \cos^2 x \right)}{\left( 1 + \cos x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)\left( x \cos x + \sin x \right) + x\left( 1 + \cos x \right)\left( 1 - \cos x \right)}{\left( 1 + \cos x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)\left( x \cos x + \sin x + x - x\cos x \right)}{\left( 1 + \cos x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)\left( x + \sin x \right)}{\left( 1 + \cos x \right)^2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.5 | Q 11 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of 99x at x = 100.


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of (x) = tan x at x = 0 


\[\frac{x^2 + 1}{x}\]


(x + 2)3


\[\sqrt{2 x^2 + 1}\]


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


tan2 


\[\tan \sqrt{x}\] 


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


cos (x + a)


x3 sin 


x5 ex + x6 log 


(x sin x + cos x) (x cos x − sin x


x3 ex cos 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{x^5 - \cos x}{\sin x}\] 


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of 2x4 + x.


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×