Advertisements
Advertisements
प्रश्न
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
उत्तर
\[f\left( x \right) = \left| x \right| + \left| x - 1 \right|\]
\[\text{ Case }1: x<0 (\therefore x-1<-1<0)\]
\[\left| x \right| = - x; \left| x - 1 \right| = - \left( x - 1 \right) = - x + 1\]
\[f\left( x \right) = - x + \left( - x + 1 \right) = - 2x\]
\[f'\left( x \right) = - 2\]
\[\text{ Case } 2: 0< x <1 (\therefore x>0 \text{ and } x-1<0)\]
\[\left| x \right| = x; \left| x - 1 \right| = - \left( x - 1 \right) = 1 - x\]
\[f\left( x \right) = x + 1 - x = 1\]
\[f'\left( x \right) = 0\]
\[\text{ Case } 3: x>1 \therefore x>1>0 \Rightarrow x>0)\]
\[\left| x \right| = x; \left| x - 1 \right| = x - 1\]
\[f\left( x \right) = x + x - 1 = 2x - 1\]
\[f'\left( x \right) = 2\]
\[f'(x)=\begin{cases}-2, \text{When } x < 0 \\0, \text{When }0 < x <1\\2, \text{When } x >1 \end{cases}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
\[\frac{x + 1}{x + 2}\]
Differentiate of the following from first principle:
− x
tan2 x
\[\tan \sqrt{x}\]
x4 − 2 sin x + 3 cos x
log3 x + 3 loge x + 2 tan x
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
x3 sin x
xn tan x
x2 sin x log x
x5 ex + x6 log x
x4 (5 sin x − 3 cos x)
(2x2 − 3) sin x
x5 (3 − 6x−9)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
(ax + b)n (cx + d)n
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Find the derivative of f(x) = tan(ax + b), by first principle.