Advertisements
Advertisements
प्रश्न
\[\frac{{10}^x}{\sin x}\]
उत्तर
\[\text{ Let } u = {10}^x ; v = \sin x\]
\[\text{ Then }, u' = {10}^x \log 10; v' = \cos x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{{10}^x}{\sin x} \right) = \frac{\sin x {10}^x \log 10 - {10}^x \cos x}{\sin^2 x}\]
\[ = \frac{\sin x {10}^x \log 10}{\sin^2 x} - \frac{{10}^x \cos x}{\sin^2 x}\]
\[ = {10}^x \log 10 \cos ec x - {10}^x cosec x \cot x\]
\[ = {10}^x cosec x\left( \log 10 - \cot x \right)\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = x2 − 2 at x = 10
\[\frac{x + 2}{3x + 5}\]
k xn
(x + 2)3
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
sin x + cos x
tan2 x
\[\sqrt{\tan x}\]
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{2 x^2 + 3x + 4}{x}\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
x3 sin x
(x3 + x2 + 1) sin x
(1 − 2 tan x) (5 + 4 sin x)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{1}{a x^2 + bx + c}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.