मराठी

10 X Sin X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{{10}^x}{\sin x}\] 

उत्तर

\[\text{ Let } u = {10}^x ; v = \sin x\]
\[\text{ Then }, u' = {10}^x \log 10; v' = \cos x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{{10}^x}{\sin x} \right) = \frac{\sin x {10}^x \log 10 - {10}^x \cos x}{\sin^2 x}\]
\[ = \frac{\sin x {10}^x \log 10}{\sin^2 x} - \frac{{10}^x \cos x}{\sin^2 x}\]
\[ = {10}^x \log 10 \cos ec x - {10}^x cosec x \cot x\]
\[ = {10}^x cosec x\left( \log 10 - \cot x \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.5 | Q 17 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of f (x) = x2 − 2 at x = 10


\[\frac{x + 2}{3x + 5}\]


k xn


(x + 2)3


Differentiate  of the following from first principle:

e3x


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle: 

sin x + cos x


tan2 


\[\sqrt{\tan x}\]


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\] 


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


x3 sin 


(x3 + x2 + 1) sin 


(1 − 2 tan x) (5 + 4 sin x)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{1}{a x^2 + bx + c}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×