Advertisements
Advertisements
प्रश्न
\[\frac{x + 2}{3x + 5}\]
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{x + h + 2}{3\left( x + h \right) + 5} - \frac{x + 2}{3x + 5}}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{x + h + 2}{3x + 3h + 5} - \frac{x + 2}{3x + 5}}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h + 2 \right)\left( 3x + 5 \right) - \left( 3x + 3h + 5 \right)\left( x + 2 \right)}{h\left( 3x + 3h + 5 \right)\left( 3x + 5 \right)}\]
\[ = \lim_{h \to 0} \frac{3 x^2 + 3xh + 6x + 5x + 5h + 10 - 3 x^2 - 3xh - 5x - 6x - 6h - 10}{h\left( 3x + 3h + 5 \right)\left( 3x + 5 \right)}\]
\[ = \lim_{h \to 0} \frac{- h}{h\left( 3x + 3h + 5 \right)\left( 3x + 5 \right)}\]
\[ = \lim_{h \to 0} \frac{- 1}{\left( 3x + 3h + 5 \right)\left( 3x + 5 \right)}\]
\[ = \frac{- 1}{\left( 3x + 5 \right)^2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of x at x = 1.
Find the derivative of x–3 (5 + 3x).
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = tan x at x = 0
\[\frac{1}{x^3}\]
\[\frac{x + 1}{x + 2}\]
k xn
(x + 2)3
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
\[\sqrt{\tan x}\]
\[\tan \sqrt{x}\]
ex log a + ea long x + ea log a
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
cos (x + a)
x3 ex
(x3 + x2 + 1) sin x
sin x cos x
x5 ex + x6 log x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{x}{\sin^n x}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is