मराठी

X + 2 3 X + 5 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{x + 2}{3x + 5}\]

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{x + h + 2}{3\left( x + h \right) + 5} - \frac{x + 2}{3x + 5}}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{x + h + 2}{3x + 3h + 5} - \frac{x + 2}{3x + 5}}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h + 2 \right)\left( 3x + 5 \right) - \left( 3x + 3h + 5 \right)\left( x + 2 \right)}{h\left( 3x + 3h + 5 \right)\left( 3x + 5 \right)}\]
\[ = \lim_{h \to 0} \frac{3 x^2 + 3xh + 6x + 5x + 5h + 10 - 3 x^2 - 3xh - 5x - 6x - 6h - 10}{h\left( 3x + 3h + 5 \right)\left( 3x + 5 \right)}\]
\[ = \lim_{h \to 0} \frac{- h}{h\left( 3x + 3h + 5 \right)\left( 3x + 5 \right)}\]
\[ = \lim_{h \to 0} \frac{- 1}{\left( 3x + 3h + 5 \right)\left( 3x + 5 \right)}\]
\[ = \frac{- 1}{\left( 3x + 5 \right)^2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 1.07 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of x at x = 1.


Find the derivative of x–3 (5 + 3x).


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of (x) = tan x at x = 0 


\[\frac{1}{x^3}\]


\[\frac{x + 1}{x + 2}\]


k xn


(x + 2)3


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


\[\sqrt{\tan x}\]


\[\tan \sqrt{x}\]


ex log a + ea long x + ea log a


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


cos (x + a)


x3 e


(x3 + x2 + 1) sin 


sin x cos x


x5 ex + x6 log 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{x}{\sin^n x}\]


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×