Advertisements
Advertisements
प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
उत्तर
Let f(x) = sin (x + a)
f(x + h) = sin (x + h + a)
By first principle,
f'(x) = `lim_(h->0)(f(x + h) - f(x))/h`
= `lim_(h->0)(sin (x + h + a) - sin (x + a))/h`
= `lim_(h->0)1/h [2cos ((x + h + a + x + a)/2) sin ((x + h + a - x - a)/2)]`
= `lim_(h->0)1/h [(2 cos (2x + 2a + h)/2) sin (h/2)]`
= `lim_(h->0)1/h [( cos (2x + 2a + h)/2) {sin (h/2)/(h/2)}]`
= `lim_(h->0)1/h [((2x + 2a + h)/2) lim_(h->0){sin (h/2)/((h/2))}]` `["As" h ->0 => h/2 ->0]`
= `cos ((2x + 2a)/ 2) xx 1` `[lim_(x->0) (sin x)/x = 1]`
= cos (x + a)
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of f (x) = cos x at x = 0
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{1}{\sqrt{x}}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{x + 1}{x + 2}\]
x2 + x + 3
(x + 2)3
\[\frac{2x + 3}{x - 2}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
3x + x3 + 33
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
\[\frac{2^x \cot x}{\sqrt{x}}\]
x4 (5 sin x − 3 cos x)
(ax + b) (a + d)2
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
`(a + b sin x)/(c + d cos x)`