मराठी

2 X Cot X √ X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{2^x \cot x}{\sqrt{x}}\] 

उत्तर

\[\frac{2^x \cot x}{\sqrt{x}} = 2^x \cot x \left( x^\frac{- 1}{2} \right)\]
\[\text{ Let } u = 2^x ; v = \cot x; w = x^\frac{- 1}{2} \]
\[\text{ Then }, u' = 2^x \log 2; v' = - {cosec}^2 x; w' = \frac{- 1}{2} x^\frac{- 3}{2} \]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uvw \right) = u'vw + uv'w + uvw'\]
\[\frac{d}{dx}\left[ 2^x \cot x \left( x^\frac{- 1}{2} \right) \right] = 2^x \log 2 . \cot x . x^\frac{- 1}{2} + 2^x \left( - {cosec}^2 x \right) x^\frac{- 1}{2} + 2^x \cot x\left( \frac{- 1}{2} x^\frac{- 3}{2} \right)\]
\[ = 2^x \log 2 . \cot x . \frac{1}{\sqrt{x}} + 2^x \left( - {cosec}^2 x \right)\frac{1}{\sqrt{x}} + 2^x \cot x\left( \frac{- 1}{2x\sqrt{x}} \right)\]
\[ = \frac{2^x}{\sqrt{x}}\left( \log 2 . \cot x - {cosec}^2 x - \frac{\cot x}{2x} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.4 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.4 | Q 8 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x at x = 1.


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


\[\frac{1}{\sqrt{x}}\]


k xn


 x2 + x + 3


 (x2 + 1) (x − 5)


tan (2x + 1) 


\[\sin \sqrt{2x}\]


\[\cos \sqrt{x}\]


ex log a + ea long x + ea log a


(2x2 + 1) (3x + 2) 


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


x3 e


sin x cos x


logx2 x


x3 ex cos 


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{x}{\sin^n x}\]


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×