Advertisements
Advertisements
प्रश्न
\[\frac{1}{\sqrt{x}}\]
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{1}{\sqrt{x + h}} - \frac{1}{\sqrt{x}}}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{x} - \sqrt{x + h}}{h\sqrt{x}\sqrt{x + h}} \times \frac{\sqrt{x} + \sqrt{x + h}}{\sqrt{x} + \sqrt{x + h}}\]
\[ = \lim_{h \to 0} \frac{x - x - h}{h\sqrt{x}\sqrt{x + h}\left( \sqrt{x} + \sqrt{x + h} \right)}\]
\[ = \lim_{h \to 0} \frac{- h}{h\sqrt{x}\sqrt{x + h}\left( \sqrt{x} + \sqrt{x + h} \right)}\]
\[ = \lim_{h \to 0} \frac{- 1}{\sqrt{x}\sqrt{x + h}\left( \sqrt{x} + \sqrt{x + h} \right)}\]
\[ = \frac{- 1}{\sqrt{x}\sqrt{x}\left( \sqrt{x} + \sqrt{x} \right)}\]
\[ = \frac{- 1}{x \times 2\sqrt{x}}\]
\[ = \frac{- 1}{2 x^\frac{3}{2}}\]
\[ = - \frac{1}{2} x^\frac{- 3}{2} \]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x at x = 1.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) = x2 − 2 at x = 10
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
(−x)−1
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
\[\sin \sqrt{2x}\]
\[\cos \sqrt{x}\]
ex log a + ea long x + ea log a
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{2 x^2 + 3x + 4}{x}\]
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
xn loga x
(x sin x + cos x) (x cos x − sin x)
(1 +x2) cos x
x−3 (5 + 3x)
\[\frac{x}{1 + \tan x}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Find the derivative of x2 cosx.
(ax2 + cot x)(p + q cos x)