Advertisements
Advertisements
प्रश्न
\[\frac{2 x^2 + 3x + 4}{x}\]
उत्तर
\[\frac{d}{dx}\left( \frac{2 x^2 + 3x + 4}{x} \right)\]
\[ = \frac{d}{dx}\left( \frac{2 x^2}{x} \right) + \frac{d}{dx}\left( \frac{3x}{x} \right) + \frac{d}{dx}\left( \frac{4}{x} \right)\]
\[ = 2\frac{d}{dx}\left( x \right) + 3\frac{d}{dx}\left( 1 \right) + 4\frac{d}{dx}\left( x^{- 1} \right)\]
\[ = 2\left( 1 \right) + 3\left( 0 \right) + 4\left( - 1 \right) x^{- 2} \]
\[ = 2 - \frac{4}{x^2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of the following function at the indicated point:
\[\frac{2}{x}\]
(x + 2)3
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
e3x
x ex
tan (2x + 1)
\[\sqrt{\tan x}\]
\[\tan \sqrt{x}\]
\[\tan \sqrt{x}\]
ex log a + ea long x + ea log a
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
xn loga x
\[\frac{2^x \cot x}{\sqrt{x}}\]
x5 ex + x6 log x
(x sin x + cos x ) (ex + x2 log x)
(1 − 2 tan x) (5 + 4 sin x)
(2x2 − 3) sin x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]