मराठी

2 x 2 + 3 x + 4 x - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{2 x^2 + 3x + 4}{x}\] 

उत्तर

\[\frac{d}{dx}\left( \frac{2 x^2 + 3x + 4}{x} \right)\]
\[ = \frac{d}{dx}\left( \frac{2 x^2}{x} \right) + \frac{d}{dx}\left( \frac{3x}{x} \right) + \frac{d}{dx}\left( \frac{4}{x} \right)\]
\[ = 2\frac{d}{dx}\left( x \right) + 3\frac{d}{dx}\left( 1 \right) + 4\frac{d}{dx}\left( x^{- 1} \right)\]
\[ = 2\left( 1 \right) + 3\left( 0 \right) + 4\left( - 1 \right) x^{- 2} \]
\[ = 2 - \frac{4}{x^2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.3 | Q 9 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of the following function at the indicated point:


\[\frac{2}{x}\]


(x + 2)3


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle:

e3x


x ex


tan (2x + 1) 


\[\sqrt{\tan x}\]


\[\tan \sqrt{x}\]


\[\tan \sqrt{x}\] 


ex log a + ea long x + ea log a


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


xn loga 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


x5 ex + x6 log 


(x sin x + cos x ) (ex + x2 log x


(1 − 2 tan x) (5 + 4 sin x)


(2x2 − 3) sin 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×