Advertisements
Advertisements
प्रश्न
\[\frac{x + e^x}{1 + \log x}\]
उत्तर
\[\text{ Let } u = x + e^x ; v = 1 + \log x\]
\[\text{ Then }, u' = 1 + e^x ; v' = \frac{1}{x}\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x + e^x}{1 + \log x} \right) = \frac{\left( 1 + \log x \right)\left( 1 + e^x \right) - \left( x + e^x \right)\left( \frac{1}{x} \right)}{(1 + \log x )^2}\]
\[ = \frac{x + x e^x + x \log x + x \log x e^x - x - e^x}{x(1 + \log x )^2}\]
\[ = \frac{x \log x + x \log x e^x - e^x + x e^x}{x(1 + \log x )^2}\]
\[ = \frac{x \log x \left( 1 + e^x \right) - e^x \left( 1 - x \right)}{x(1 + \log x )^2}\]
APPEARS IN
संबंधित प्रश्न
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{x + 2}{3x + 5}\]
x2 + x + 3
(x2 + 1) (x − 5)
\[\sqrt{2 x^2 + 1}\]
x ex
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
x4 − 2 sin x + 3 cos x
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
ex log a + ea long x + ea log a
(2x2 + 1) (3x + 2)
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{2 x^2 + 3x + 4}{x}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
sin2 x
logx2 x
(2x2 − 3) sin x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is