मराठी

4 X + 5 Sin X 3 X + 7 Cos X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]

उत्तर

\[\text{ Let } u = 4x + 5 \sin x; v = 3x + 7 \cos x\]
\[\text{ Then }, u' = 4 + 5 \cos x; v' = 3 - 7 \sin x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{4x + 5 \sin x}{3x + 7 \cos x} \right) = \frac{\left( 3x + 7 \cos x \right)\left( 4 + 5 \cos x \right) - \left( 4x + 5 \sin x \right)\left( 3 - 7 \sin x \right)}{\left( 3x + 7 \cos x \right)^2}\]
\[ = \frac{12x + 15 x \cos x + 28 \cos x + 35 \cos^2 x - 12x + 28 x \sin x - 15 \sin x + 35 \sin^2 x}{\left( 3x + 7 \cos x \right)^2}\]
\[ = \frac{15 x \cos x + 28 x \sin x + 28 \cos x15 \sin x + 35\left( \sin^2 x + \cos^2 x \right)}{\left( 3x + 7 \cos x \right)^2}\]
\[ = \frac{15 x \cos x + 28 x \sin x + 28 \cos x15 \sin x + 35}{\left( 3x + 7 \cos x \right)^2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.5 | Q 21 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:


 x2 + x + 3


\[\frac{2x + 3}{x - 2}\] 


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


\[\sqrt{\tan x}\]


ex log a + ea long x + ea log a


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


x3 e


xn loga 


(x3 + x2 + 1) sin 


(x sin x + cos x ) (ex + x2 log x


(ax + b)n (cx d)


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×