Advertisements
Advertisements
प्रश्न
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
उत्तर
\[\text{ Let } u = 4x + 5 \sin x; v = 3x + 7 \cos x\]
\[\text{ Then }, u' = 4 + 5 \cos x; v' = 3 - 7 \sin x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{4x + 5 \sin x}{3x + 7 \cos x} \right) = \frac{\left( 3x + 7 \cos x \right)\left( 4 + 5 \cos x \right) - \left( 4x + 5 \sin x \right)\left( 3 - 7 \sin x \right)}{\left( 3x + 7 \cos x \right)^2}\]
\[ = \frac{12x + 15 x \cos x + 28 \cos x + 35 \cos^2 x - 12x + 28 x \sin x - 15 \sin x + 35 \sin^2 x}{\left( 3x + 7 \cos x \right)^2}\]
\[ = \frac{15 x \cos x + 28 x \sin x + 28 \cos x15 \sin x + 35\left( \sin^2 x + \cos^2 x \right)}{\left( 3x + 7 \cos x \right)^2}\]
\[ = \frac{15 x \cos x + 28 x \sin x + 28 \cos x15 \sin x + 35}{\left( 3x + 7 \cos x \right)^2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
x2 + x + 3
\[\frac{2x + 3}{x - 2}\]
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\sqrt{\tan x}\]
ex log a + ea long x + ea log a
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
x3 ex
xn loga x
(x3 + x2 + 1) sin x
(x sin x + cos x ) (ex + x2 log x)
(ax + b)n (cx + d)n
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Find the derivative of f(x) = tan(ax + b), by first principle.