मराठी

Differentiate Each of the Following from First Principle: Sin X X - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]

उत्तर

\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{\sin \left( x + h \right)}{x + h} - \frac{\sin x}{x}}{h}\]
\[ = \lim_{h \to 0} \frac{x \sin \left( x + h \right) - \left( x + h \right) \sin x}{h x \left( x + h \right)}\]
\[ = \lim_{h \to 0} \frac{x \left( \sin x \cos h + \cos x \sin h \right) - x \sin x - h \sin x}{h x \left( x + h \right)}\]
\[ = \lim_{h \to 0} \frac{x \sin x \cos h + x \cos x \sin h - x \sin x - h \sin x}{h x \left( x + h \right)}\]
\[ = \lim_{h \to 0} \frac{x \sin x \cos h - x \sin x + x \cos x \sin h - h \sin x}{h x \left( x + h \right)}\]
\[ = x \sin x \lim_{h \to 0} \frac{\cos h - 1}{h} + \frac{x \cos x}{x} \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{x + h} - \frac{\sin x}{x} \lim_{h \to 0} \frac{1}{x + h}\]
\[ = x \sin x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{h} + \frac{x \cos x}{x} \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{x + h} - \frac{\sin x}{x} \lim_{h \to 0} \frac{1}{x + h}\]
\[ = x \sin x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}} \times \frac{h}{4} + \frac{x \cos x}{x} \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{x + h} - \frac{\sin x}{x} \lim_{h \to 0} \frac{1}{x + h}\]
\[ = - x \sin x \times \lim_{h \to 0} \frac{h}{2} + \frac{x \cos x}{x} \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{x + h} - \frac{\sin x}{x} \lim_{h \to 0} \frac{1}{x + h}\]
\[ = - x \sin x \left( \frac{1}{2} \right) \left( 0 \right) + \frac{cos x}{x} - \frac{sin x}{x^2}\]
\[ = \frac{\cos x}{x} - \frac{\sin x}{x^2}\]
\[ = \frac{x \cos x - \sin x}{x^2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 3.02 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of `2x - 3/4`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (x) = 3x at x = 2 


\[\frac{x^2 - 1}{x}\]


\[\frac{x + 1}{x + 2}\]


\[\frac{1}{\sqrt{3 - x}}\]


\[\sqrt{2 x^2 + 1}\]


x ex


Differentiate  of the following from first principle: 

− x


Differentiate each of the following from first principle:

x2 e


tan2 


\[\sqrt{\tan x}\]


\[\cos \sqrt{x}\]


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


x2 sin x log 


(x sin x + cos x ) (ex + x2 log x


(1 − 2 tan x) (5 + 4 sin x)


sin2 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x4 (5 sin x − 3 cos x)


x5 (3 − 6x−9


x−3 (5 + 3x


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{x^5 - \cos x}{\sin x}\] 


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×