मराठी

If F (1) = 1, F' (1) = 2, Then Write the Value of Lim X → 1 √ F ( X ) − 1 √ X − 1 - Mathematics

Advertisements
Advertisements

प्रश्न

If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 

उत्तर

\[\lim_{x \to 1} \frac{\sqrt{f\left( x \right)} - 1}{\sqrt{x} - 1}\]
\[ = \lim_{x \to 1} \frac{\sqrt{f\left( x \right)} - 1}{\sqrt{x} - 1} \times \frac{\sqrt{f\left( x \right)} + 1}{\sqrt{f\left( x \right)} + 1} \times \frac{\sqrt{x} + 1}{\sqrt{x} + 1}\]
\[ = \lim_{x \to 1} \frac{\left( f\left( x \right) - 1 \right)\left( \sqrt{x} + 1 \right)}{\left( x - 1 \right)\left( \sqrt{f\left( x \right)} + 1 \right)}\]
\[ = \lim_{x \to 1} \frac{f\left( x \right) - 1}{x - 1} \times \lim_{x \to 1} \frac{\left( \sqrt{x} + 1 \right)}{\left( \sqrt{f\left( x \right)} + 1 \right)}\]
\[ = f'\left( 1 \right) \times \frac{1 + 1}{\sqrt{f\left( 1 \right)} + 1}\]
\[ = 2 \times \frac{2}{1 + 1}\]
\[ = 2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.6 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.6 | Q 11 | पृष्ठ ४७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


\[\frac{2}{x}\]


(x + 2)3


x ex


Differentiate of the following from first principle:

(−x)−1


Differentiate each of the following from first principle:

\[3^{x^2}\]


\[\tan \sqrt{x}\] 


3x + x3 + 33


ex log a + ea long x + ea log a


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


x5 ex + x6 log 


(x sin x + cos x) (x cos x − sin x


(1 +x2) cos x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{p x^2 + qx + r}{ax + b}\]


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Find the derivative of 2x4 + x.


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×