मराठी

Differentiate of the Following from First Principle: Sin (X + 1) - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate of the following from first principle:

(−x)−1

उत्तर

\[ \left( - x \right)^{- 1} = \frac{1}{- x} \]
\[\frac{d}{dx}\left( f\left( x \right) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( \frac{1}{- x} \right) = \lim_{h \to 0} \frac{\frac{1}{- \left( x + h \right)} - \frac{1}{- x}}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{- 1}{x + h} + \frac{1}{x}}{h}\]
\[ = \lim_{h \to 0} \frac{- x + x + h}{h x \left( x + h \right)}\]
\[ = \lim_{h \to 0} \frac{h}{h x \left( x + h \right)}\]
\[ = \lim_{h \to 0} \frac{1}{x \left( x + h \right)}\]
\[ = \frac{1}{x . x}\]
\[ = \frac{1}{x^2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 2.06 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


x ex


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


\[\tan \sqrt{x}\] 


x4 − 2 sin x + 3 cos x


ex log a + ea long x + ea log a


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


cos (x + a)


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


x2 ex log 


xn tan 


xn loga 


(1 − 2 tan x) (5 + 4 sin x)


\[e^x \log \sqrt{x} \tan x\] 


x−3 (5 + 3x


(ax + b)n (cx d)


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{3^x}{x + \tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


(ax2 + cot x)(p + q cos x)


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×