मराठी

Differentiate of the Following from First Principle:Sin (X + 1) - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate  of the following from first principle:

sin (x + 1)

उत्तर

\[ \frac{d}{dx}\left( f\left( x \right) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( \sin \left( x + 1 \right) \right) = \lim_{h \to 0} \frac{\sin \left( x + h + 1 \right) - \sin \left( x + 1 \right)}{h}\]
\[\text{ We know }:\]
\[\sin C - \sin D = 2 \cos \left( \frac{C + D}{2} \right) \sin \left( \frac{C - D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{x + h + 1 + x + 1}{2} \right) \sin \left( \frac{x + h + 1 - x - 1}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{2x + h + 2}{2} \right) \sin \left( \frac{h}{2} \right)}{h}\]
\[ = 2 \lim_{h \to 0} \cos \left( \frac{2x + h + 2}{2} \right) \lim_{h \to 0} \frac{\sin \left( \frac{h}{2} \right)}{\frac{h}{2}} \times \frac{1}{2}\]
\[ = 2 \cos \left( x + 1 \right) \times \frac{1}{2}\]
\[ = \cos \left( x + 1 \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 2.07 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x at x = 1.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of f (xx at x = 1

 


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point:


\[\frac{2}{x}\]


\[\frac{x + 2}{3x + 5}\]


 (x2 + 1) (x − 5)


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


tan2 


\[\frac{2 x^2 + 3x + 4}{x}\] 


2 sec x + 3 cot x − 4 tan x


x3 sin 


xn loga 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


(x sin x + cos x) (x cos x − sin x


sin2 


x4 (3 − 4x−5)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


(ax + b) (a + d)2


\[\frac{3^x}{x + \tan x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of 2x4 + x.


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×