Advertisements
Advertisements
प्रश्न
xn loga x
उत्तर
\[\text{ Let } u = x^n ; v = \log_a x = \frac{\log x}{\log a}\]
\[\text{ Then }, u' = n x^{n - 1} ; v' = \frac{1}{x \log a}\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left( x^n \log_a x \right) = x^n . \frac{1}{x \log a} + \log_a x \left( n x^{n - 1} \right)\]
\[ = x^{n - 1} \frac{1}{\log a} + \log_a x \left( n x^{n - 1} \right)\]
\[ = x^{n - 1} \left( \frac{1}{\log a} + n \log_a x \right)\]
APPEARS IN
संबंधित प्रश्न
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of f (x) x at x = 1
\[\frac{2}{x}\]
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
tan2 x
tan 2x
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
(x3 + x2 + 1) sin x
x5 ex + x6 log x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
(ax + b)n (cx + d)n
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
(ax2 + cot x)(p + q cos x)
`(a + b sin x)/(c + d cos x)`