मराठी

X 2 + 1 X + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{x^2 + 1}{x + 1}\] 

उत्तर

\[\text{ Let } u = x^2 + 1; v = x + 1\]
\[\text{ The }n, u' = 2x; v' = 1\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x^2 + 1}{x + 1} \right) = \frac{\left( x + 1 \right)2x - \left( x^2 + 1 \right)1}{(x + 1 )^2}\]
\[ = \frac{2 x^2 + 2x - x^2 - 1}{(x + 1 )^2}\]
\[ = \frac{x^2 + 2x - 1}{(x + 1 )^2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.5 | Q 1 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x at x = 1.


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{1}{x^3}\]


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


\[\cos \sqrt{x}\]


(2x2 + 1) (3x + 2) 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


x3 e


xn tan 


sin x cos x


logx2 x


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Find the derivative of f(x) = tan(ax + b), by first principle.


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×