मराठी

Differentiate Each of the Following from First Principle:\[A^\Sqrt{X}\] - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate each of the following from first principle:

\[a^\sqrt{x}\]

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( a^\sqrt{x} \right) = \lim_{h \to 0} \frac{a^\sqrt{x + h} - a^\sqrt{x}}{h}\]
\[ = \lim_{h \to 0} \frac{a^\sqrt{x} \left( a^\sqrt{x + h} - \sqrt{x} - 1 \right)}{\left( x + h \right) - \left( x \right)}\]
\[ = a^\sqrt{x} \lim_{h \to 0} \frac{\left( a^\sqrt{x + h} - \sqrt{x} - 1 \right)}{\left( \sqrt{x + h} \right)^2 - \left( \sqrt{x} \right)^2}\]
\[ = a^\sqrt{x} \lim_{h \to 0} \frac{\left( a^\sqrt{x + h} - \sqrt{x} - 1 \right)}{\left( \sqrt{x + h} - \sqrt{x} \right)\left( \sqrt{x + h} + \sqrt{x} \right)}\]
\[ = a^\sqrt{x} \lim_{h \to 0} \frac{\left( a^\sqrt{x + h} - \sqrt{x} - 1 \right)}{\left( \sqrt{x + h} - \sqrt{x} \right)} \lim_{h \to 0} \frac{1}{\left( \sqrt{x + h} + \sqrt{x} \right)}\]
\[ = a^\sqrt{x} \log_e a \frac{1}{2\sqrt{x}}\]
\[ = \frac{1}{2\sqrt{x}} a^\sqrt{x} \log_e a\]
\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 3.11 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{2}{x}\]


(x + 2)3


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


tan (2x + 1) 


\[\sin \sqrt{2x}\]


3x + x3 + 33


(2x2 + 1) (3x + 2) 


(1 − 2 tan x) (5 + 4 sin x)


(1 +x2) cos x


(2x2 − 3) sin 


(ax + b) (a + d)2


(ax + b)n (cx d)


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of 2x4 + x.


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×