Advertisements
Advertisements
प्रश्न
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( a^\sqrt{x} \right) = \lim_{h \to 0} \frac{a^\sqrt{x + h} - a^\sqrt{x}}{h}\]
\[ = \lim_{h \to 0} \frac{a^\sqrt{x} \left( a^\sqrt{x + h} - \sqrt{x} - 1 \right)}{\left( x + h \right) - \left( x \right)}\]
\[ = a^\sqrt{x} \lim_{h \to 0} \frac{\left( a^\sqrt{x + h} - \sqrt{x} - 1 \right)}{\left( \sqrt{x + h} \right)^2 - \left( \sqrt{x} \right)^2}\]
\[ = a^\sqrt{x} \lim_{h \to 0} \frac{\left( a^\sqrt{x + h} - \sqrt{x} - 1 \right)}{\left( \sqrt{x + h} - \sqrt{x} \right)\left( \sqrt{x + h} + \sqrt{x} \right)}\]
\[ = a^\sqrt{x} \lim_{h \to 0} \frac{\left( a^\sqrt{x + h} - \sqrt{x} - 1 \right)}{\left( \sqrt{x + h} - \sqrt{x} \right)} \lim_{h \to 0} \frac{1}{\left( \sqrt{x + h} + \sqrt{x} \right)}\]
\[ = a^\sqrt{x} \log_e a \frac{1}{2\sqrt{x}}\]
\[ = \frac{1}{2\sqrt{x}} a^\sqrt{x} \log_e a\]
\[\]
APPEARS IN
संबंधित प्रश्न
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{2}{x}\]
(x + 2)3
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
tan (2x + 1)
\[\sin \sqrt{2x}\]
3x + x3 + 33
(2x2 + 1) (3x + 2)
(1 − 2 tan x) (5 + 4 sin x)
(1 +x2) cos x
(2x2 − 3) sin x
(ax + b) (a + d)2
(ax + b)n (cx + d)n
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of 2x4 + x.
`(a + b sin x)/(c + d cos x)`