मराठी

If |X| < 1 and Y = 1 + X + X2 + X3 + ..., Then Write the Value of D Y D X - Mathematics

Advertisements
Advertisements

प्रश्न

If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 

उत्तर

The given series is a geometric series where a = 1 and r = x. 

\[f\left( x \right) = 1 + x + x^2 + x^3 + . . . = \frac{1}{1 - x}\]
\[\left( \text{ Sum of the infinite series of a geometric series is }\frac{a}{1 - r}. \right)\]
\[f'\left( x \right) = \frac{- 1}{(1 - x )^2}\frac{d}{dx}(1 - x)\]
\[ = \frac{- 1}{(1 - x )^2}( - 1)\]
\[ = \frac{1}{(1 - x )^2}\] 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.6 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.6 | Q 13 | पृष्ठ ४७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{x^2 - 1}{x}\]


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


 tan 2


\[\sin \sqrt{2x}\]


\[\tan \sqrt{x}\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


x3 sin 


x3 e


x2 ex log 


xn loga 


x5 ex + x6 log 


x5 (3 − 6x−9


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Find the derivative of x2 cosx.


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×