Advertisements
Advertisements
प्रश्न
x5 (3 − 6x−9)
उत्तर
\[\text{ Let } u = x^5 ; v = \left( 3 - 6 x^{- 9} \right)\]
\[\text{ Then }, u' = 5 x^4 ; v' = 54 x^{- 10} \]
\[\text{ Using theproduct rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left[ x^5 \left( 3 - 6 x^{- 9} \right) \right] = x^5 \left( 54 x^{- 10} \right) + \left( 3 - 6 x^{- 9} \right)\left( 5 x^4 \right)\]
\[ = 54 x^{- 5} + 15 x^4 - 30 x^{- 5} \]
\[ = 15 x^4 + 24 x^{- 5}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
\[\frac{2}{x}\]
\[\frac{x^2 + 1}{x}\]
\[\frac{x + 2}{3x + 5}\]
x2 + x + 3
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
x2 ex
\[\sin \sqrt{2x}\]
\[\cos \sqrt{x}\]
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
x3 sin x
(x3 + x2 + 1) sin x
(x sin x + cos x ) (ex + x2 log x)
(2x2 − 3) sin x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
\[\frac{x}{1 + \tan x}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{x + \cos x}{\tan x}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Find the derivative of 2x4 + x.
`(a + b sin x)/(c + d cos x)`
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.