मराठी

(X Sin X + Cos X ) (Ex + X2 Log X) - Mathematics

Advertisements
Advertisements

प्रश्न

(x sin x + cos x ) (ex + x2 log x

उत्तर

\[\text{ Let } u = x \sin x + \cos x; v = e^x + x^2 \log x \]
\[\text{ Then }, u' = \left[ x\frac{d}{dx}\left( \sin x \right) + \sin x \frac{d}{dx}\left( x \right) \right] - \sin x \]
\[ = x \cos x + \sin x - \sin x \]
\[ = x \cos x\]
\[ v' = e^x + \left[ x^2 \frac{d}{dx}\left( \log x \right) + \log x \frac{d}{dx}\left( x^2 \right) \right]\]
\[ = e^x + x + 2x \log x \]
\[ \]
\[ \text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = u v ' + v u'\]
\[\frac{d}{dx}\left[ \left( x \sin x + \cos x \right)\left( e^x + x^2 \cos x \right) \right]\]
\[ = \left( x \sin x + \cos x \right)\left( e^x + x + 2x \log x \right) + \left( e^x + x^2 \log x \right) \left( x \cos x \right)\]
\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.4 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.4 | Q 12 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of x–3 (5 + 3x).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:


\[\frac{2}{x}\]


\[\frac{x + 1}{x + 2}\]


\[\frac{x + 2}{3x + 5}\]


k xn


 x2 + x + 3


x ex


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


\[\sin \sqrt{2x}\]


\[\tan \sqrt{x}\] 


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


ex log a + ea long x + ea log a


x3 sin 


x2 ex log 


x2 sin x log 


(1 +x2) cos x


x5 (3 − 6x−9


x4 (3 − 4x−5)


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


(ax + b) (a + d)2


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{\sec x - 1}{\sec x + 1}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×