मराठी

Mark the Correct Alternative in of the Following: If F ( X ) = X − 4 2 √ X - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 

पर्याय

  •  \[\frac{5}{4}\] 

  • \[\frac{4}{5}\]

  •  1                 

  •  0

MCQ

उत्तर

\[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
\[ = \frac{1}{2}\sqrt{x} - \frac{2}{\sqrt{x}}\]
\[ = \frac{1}{2} x^\frac{1}{2} - 2 x^{- \frac{1}{2}}\]

Differentiating both sides with respect to x, we get

\[f'\left( x \right) = \frac{1}{2} \times \frac{1}{2} x^\frac{1}{2} - 1 - 2 \times \left( - \frac{1}{2} \right) x^{- \frac{1}{2} - 1} \left[ f\left( x \right) = x^n \Rightarrow f'\left( x \right) = n x^{n - 1} \right]\]
\[ \Rightarrow f'\left( x \right) = \frac{1}{4} x^{- \frac{1}{2}} + x^{- \frac{3}{2}} \]
\[ \therefore f'\left( 1 \right) = \frac{1}{4} \times 1 + 1 = \frac{5}{4}\]

Hence, the correct answer is option (a).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.7 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.7 | Q 2 | पृष्ठ ४७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of `2x - 3/4`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of the following function at the indicated point:


\[\frac{1}{\sqrt{x}}\]


\[\frac{1}{x^3}\]


x ex


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


tan (2x + 1) 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

xn tan 


\[e^x \log \sqrt{x} \tan x\] 


x4 (5 sin x − 3 cos x)


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{x + \cos x}{\tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×