Advertisements
Advertisements
प्रश्न
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
पर्याय
\[\frac{3}{2}\]
1
0
−1
उत्तर
Given: f(x) = x − [x], x ∈ R
Now,
For 0 ≤ x < 1, [x] = 0.
∴ f(x) = x − 0 = x, ∀ x ∈ [0, 1)
Differentiating both sides with respect to x, we get
f '(x) = 1, ∀ x ∈ [0, 1)
\[\therefore f'\left( \frac{1}{2} \right) = 1\]
Hence, the correct answer is option (b).
APPEARS IN
संबंधित प्रश्न
Find the derivative of 99x at x = 100.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{1}{\sqrt{x}}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{x + 2}{3x + 5}\]
(x2 + 1) (x − 5)
\[\sqrt{2 x^2 + 1}\]
Differentiate each of the following from first principle:
e−x
x ex
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
\[\tan \sqrt{x}\]
ex log a + ea long x + ea log a
log3 x + 3 loge x + 2 tan x
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
xn tan x
\[\frac{2^x \cot x}{\sqrt{x}}\]
x3 ex cos x
x4 (5 sin x − 3 cos x)
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{3^x}{x + \tan x}\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
`(a + b sin x)/(c + d cos x)`