मराठी

Mark the Correct Alternative in of the Following: Let F(X) = X − [X], X ∈ R, Then F ′ ( 1 2 ) - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]

पर्याय

  •  \[\frac{3}{2}\] 

  • 1                    

  •  −1

MCQ

उत्तर

Given: f(x) = x − [x], x ∈ R
Now,
For 0 ≤ x < 1, [x] = 0.
∴ f(x) = − 0 = x, ∀ x ∈ [0, 1)
Differentiating both sides with respect to x, we get
'(x) = 1, ∀ x ∈ [0, 1)

\[\therefore f'\left( \frac{1}{2} \right) = 1\]

Hence, the correct answer is option (b).

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.7 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.7 | Q 1 | पृष्ठ ४७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of 99x at x = 100.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{1}{\sqrt{x}}\]


\[\frac{x^2 - 1}{x}\]


\[\frac{x + 2}{3x + 5}\]


 (x2 + 1) (x − 5)


\[\sqrt{2 x^2 + 1}\]


Differentiate each of the following from first principle:

ex


x ex


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\]


\[\tan \sqrt{x}\] 


ex log a + ea long x + ea log a


 log3 x + 3 loge x + 2 tan x


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

xn tan 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


x3 ex cos 


x4 (5 sin x − 3 cos x)


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{3^x}{x + \tan x}\] 


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×