English

Mark the Correct Alternative in of the Following: Let F(X) = X − [X], X ∈ R, Then F ′ ( 1 2 ) - Mathematics

Advertisements
Advertisements

Question

Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]

Options

  •  \[\frac{3}{2}\] 

  • 1                    

  •  −1

MCQ

Solution

Given: f(x) = x − [x], x ∈ R
Now,
For 0 ≤ x < 1, [x] = 0.
∴ f(x) = − 0 = x, ∀ x ∈ [0, 1)
Differentiating both sides with respect to x, we get
'(x) = 1, ∀ x ∈ [0, 1)

\[\therefore f'\left( \frac{1}{2} \right) = 1\]

Hence, the correct answer is option (b).

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.7 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.7 | Q 1 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point:


\[\frac{x + 1}{x + 2}\]


k xn


\[\frac{1}{\sqrt{3 - x}}\]


 x2 + x + 3


(x + 2)3


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


tan (2x + 1) 


ex log a + ea long x + ea log a


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


x3 e


logx2 x


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x4 (5 sin x − 3 cos x)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


(ax + b)n (cx d)


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{x + \cos x}{\tan x}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


(ax2 + cot x)(p + q cos x)


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×