English

Tan (2x + 1) - Mathematics

Advertisements
Advertisements

Question

tan (2x + 1) 

Solution

\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\tan \left( 2x + 2h + 1 \right) - \tan \left( 2x + 1 \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{sin \left( 2x + 2h + 1 \right)}{\cos \left( 2x + 2h + 1 \right)} - \frac{\sin \left( 2x + 1 \right)}{\cos \left( 2x + 1 \right)}}{h}\]
\[ = \lim_{h \to 0} \frac{sin \left( 2x + 2h + 1 \right) \cos \left( 2x + 1 \right) - \cos \left( 2x + 2h + 1 \right) \sin \left( 2x + 1 \right)}{h \cos \left( 2x + 2h + 1 \right) \cos \left( 2x + 1 \right)}\]
\[ = \lim_{h \to 0} \frac{\sin \left( 2x + 2h + 1 - 2x - 1 \right)}{h \cos \left( 2x + 2h + 1 \right) \cos \left( 2x + 1 \right)}\]
\[ = \frac{1}{\cos \left( 2x + 1 \right)} \lim_{h \to 0} \frac{\sin \left( 2h \right)}{2h} \times 2 \lim_{h \to 0} \frac{1}{\cos \left( 2x + 2h + 1 \right)}\]
\[ = \frac{1}{\cos \left( 2x + 1 \right)} \times 2 \times \frac{1}{\cos \left( 2x + 1 \right)}\]
\[ = \frac{2}{\cos^2 \left( 2x + 1 \right)}\]
\[ = 2 \sec^2 \left( 2x + 1 \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.2 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.2 | Q 4.2 | Page 26

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of 99x at x = 100.


Find the derivative of x at x = 1.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


 tan 2


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


2 sec x + 3 cot x − 4 tan x


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


(1 +x2) cos x


x−3 (5 + 3x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Find the derivative of 2x4 + x.


Find the derivative of f(x) = tan(ax + b), by first principle.


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×