Advertisements
Advertisements
Question
tan (2x + 1)
Solution
\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\tan \left( 2x + 2h + 1 \right) - \tan \left( 2x + 1 \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{sin \left( 2x + 2h + 1 \right)}{\cos \left( 2x + 2h + 1 \right)} - \frac{\sin \left( 2x + 1 \right)}{\cos \left( 2x + 1 \right)}}{h}\]
\[ = \lim_{h \to 0} \frac{sin \left( 2x + 2h + 1 \right) \cos \left( 2x + 1 \right) - \cos \left( 2x + 2h + 1 \right) \sin \left( 2x + 1 \right)}{h \cos \left( 2x + 2h + 1 \right) \cos \left( 2x + 1 \right)}\]
\[ = \lim_{h \to 0} \frac{\sin \left( 2x + 2h + 1 - 2x - 1 \right)}{h \cos \left( 2x + 2h + 1 \right) \cos \left( 2x + 1 \right)}\]
\[ = \frac{1}{\cos \left( 2x + 1 \right)} \lim_{h \to 0} \frac{\sin \left( 2h \right)}{2h} \times 2 \lim_{h \to 0} \frac{1}{\cos \left( 2x + 2h + 1 \right)}\]
\[ = \frac{1}{\cos \left( 2x + 1 \right)} \times 2 \times \frac{1}{\cos \left( 2x + 1 \right)}\]
\[ = \frac{2}{\cos^2 \left( 2x + 1 \right)}\]
\[ = 2 \sec^2 \left( 2x + 1 \right)\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of 99x at x = 100.
Find the derivative of x at x = 1.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
tan 2x
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
2 sec x + 3 cot x − 4 tan x
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
(1 +x2) cos x
x−3 (5 + 3x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Find the derivative of 2x4 + x.
Find the derivative of f(x) = tan(ax + b), by first principle.
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.