हिंदी

Tan (2x + 1) - Mathematics

Advertisements
Advertisements

प्रश्न

tan (2x + 1) 

उत्तर

\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\tan \left( 2x + 2h + 1 \right) - \tan \left( 2x + 1 \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{sin \left( 2x + 2h + 1 \right)}{\cos \left( 2x + 2h + 1 \right)} - \frac{\sin \left( 2x + 1 \right)}{\cos \left( 2x + 1 \right)}}{h}\]
\[ = \lim_{h \to 0} \frac{sin \left( 2x + 2h + 1 \right) \cos \left( 2x + 1 \right) - \cos \left( 2x + 2h + 1 \right) \sin \left( 2x + 1 \right)}{h \cos \left( 2x + 2h + 1 \right) \cos \left( 2x + 1 \right)}\]
\[ = \lim_{h \to 0} \frac{\sin \left( 2x + 2h + 1 - 2x - 1 \right)}{h \cos \left( 2x + 2h + 1 \right) \cos \left( 2x + 1 \right)}\]
\[ = \frac{1}{\cos \left( 2x + 1 \right)} \lim_{h \to 0} \frac{\sin \left( 2h \right)}{2h} \times 2 \lim_{h \to 0} \frac{1}{\cos \left( 2x + 2h + 1 \right)}\]
\[ = \frac{1}{\cos \left( 2x + 1 \right)} \times 2 \times \frac{1}{\cos \left( 2x + 1 \right)}\]
\[ = \frac{2}{\cos^2 \left( 2x + 1 \right)}\]
\[ = 2 \sec^2 \left( 2x + 1 \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.2 | Q 4.2 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of f (x) = cos x at x = 0


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


\[\frac{x^2 + 1}{x}\]


\[\frac{1}{\sqrt{3 - x}}\]


\[\frac{2x + 3}{x - 2}\] 


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


3x + x3 + 33


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


xn loga 


x2 sin x log 


(x sin x + cos x ) (ex + x2 log x


sin2 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×