हिंदी

Find the derivative of f(x) = tan(ax + b), by first principle. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of f(x) = tan(ax + b), by first principle.

योग

उत्तर

We have f'(x) = `lim_(h -> 0) (f(x + h) - f(x))/h`

= `lim_(h -> 0) (tan(a(x + h) + b) - tan(ax + b))/h`

= `lim_(h -> 0) ((sin(ax + ah + b))/(cos(ax + ah + b)) - (sin(ax + b))/(cos(ax + b)))/h`

= `lim_(h -> 0) (sin(ax + ah + b) cos(ax + b) - sin(ax + b) cos(ax + ah + b))/(h cos(ax + b) cos(ax + ah + b))`

= `lim_(h -> 0) (a sin (ah))/(a * h cos (ax + b) cos(ax + ah + b))`

= `lim_(h -> 0) a/(cos(ax + b) cos(ax + ah + b))`

= `lim_(ah -> 0)  (sin  ah)/(ah)`   ....[as h → 0 ah → 0]

= `a/(cos^2 (ax + b))`

= `a sec^2 (ax + b)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Solved Examples [पृष्ठ २३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Solved Examples | Q 19 | पृष्ठ २३५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


\[\frac{1}{x^3}\]


\[\frac{x^2 + 1}{x}\]


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


tan2 


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


cos (x + a)


x5 ex + x6 log 


x4 (5 sin x − 3 cos x)


(2x2 − 3) sin 


(ax + b)n (cx d)


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×