Advertisements
Advertisements
प्रश्न
Find the derivative of f(x) = tan(ax + b), by first principle.
उत्तर
We have f'(x) = `lim_(h -> 0) (f(x + h) - f(x))/h`
= `lim_(h -> 0) (tan(a(x + h) + b) - tan(ax + b))/h`
= `lim_(h -> 0) ((sin(ax + ah + b))/(cos(ax + ah + b)) - (sin(ax + b))/(cos(ax + b)))/h`
= `lim_(h -> 0) (sin(ax + ah + b) cos(ax + b) - sin(ax + b) cos(ax + ah + b))/(h cos(ax + b) cos(ax + ah + b))`
= `lim_(h -> 0) (a sin (ah))/(a * h cos (ax + b) cos(ax + ah + b))`
= `lim_(h -> 0) a/(cos(ax + b) cos(ax + ah + b))`
= `lim_(ah -> 0) (sin ah)/(ah)` ....[as h → 0 ah → 0]
= `a/(cos^2 (ax + b))`
= `a sec^2 (ax + b)`.
APPEARS IN
संबंधित प्रश्न
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
\[\frac{1}{x^3}\]
\[\frac{x^2 + 1}{x}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
tan2 x
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
cos (x + a)
x5 ex + x6 log x
x4 (5 sin x − 3 cos x)
(2x2 − 3) sin x
(ax + b)n (cx + d)n
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]