हिंदी

Differentiate of the Following from First Principle: X Cos X - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate of the following from first principle:

 x cos x

उत्तर

\[\left( x \right) \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right) \cos \left( x + h \right) - x \cos x}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right)\left( \cos x \cos h - \sin x \sin h \right) - x \cos x}{h}\]
\[ = \lim_{h \to 0} \frac{x \cos x \cos h - x \sin x \sin h + h \cos x \cos h - h \sin x \sin h - x \cos x}{h}\]
\[ = \lim_{h \to 0} \frac{x \cos x \cos h - x \cos x - x \sin x \sin h + h \cos x \cos h - h \sin x \sin h}{h}\]
\[ = x \cos x \lim_{h \to 0} \frac{\left( \cos h - 1 \right)}{h} - x \sin x \lim_{h \to 0} \frac{\sin h}{h} + \cos x \lim_{h \to 0} \cos h + \sin x \lim_{h \to 0} \sin h\]
\[ = x \cos x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}} \times \frac{h}{4} - x \sin x \left( 1 \right) + \cos x \left( 1 \right) + \sin x \left( 0 \right)\]
\[ = x\cos x \lim_{h \to 0} \frac{- h}{2} - x \sin x \left( 1 \right) + \cos x \left( 1 \right) + \sin x \left( 0 \right)\]
\[ = - x \cos x \left( 0 \right) - x \sin x + \cos x \]
\[ = - x \sin x + \cos x \]
\[ \]
\[\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.2 | Q 2.1 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of 99x at x = 100.


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (xx at x = 1

 


\[\frac{x + 1}{x + 2}\]


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle: 

sin x + cos x


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


cos (x + a)


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


x3 sin 


xn tan 


sin x cos x


\[\frac{2^x \cot x}{\sqrt{x}}\] 


(x sin x + cos x) (x cos x − sin x


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


(ax + b) (a + d)2


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×