Advertisements
Advertisements
प्रश्न
Differentiate of the following from first principle:
x cos x
उत्तर
\[\left( x \right) \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right) \cos \left( x + h \right) - x \cos x}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right)\left( \cos x \cos h - \sin x \sin h \right) - x \cos x}{h}\]
\[ = \lim_{h \to 0} \frac{x \cos x \cos h - x \sin x \sin h + h \cos x \cos h - h \sin x \sin h - x \cos x}{h}\]
\[ = \lim_{h \to 0} \frac{x \cos x \cos h - x \cos x - x \sin x \sin h + h \cos x \cos h - h \sin x \sin h}{h}\]
\[ = x \cos x \lim_{h \to 0} \frac{\left( \cos h - 1 \right)}{h} - x \sin x \lim_{h \to 0} \frac{\sin h}{h} + \cos x \lim_{h \to 0} \cos h + \sin x \lim_{h \to 0} \sin h\]
\[ = x \cos x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}} \times \frac{h}{4} - x \sin x \left( 1 \right) + \cos x \left( 1 \right) + \sin x \left( 0 \right)\]
\[ = x\cos x \lim_{h \to 0} \frac{- h}{2} - x \sin x \left( 1 \right) + \cos x \left( 1 \right) + \sin x \left( 0 \right)\]
\[ = - x \cos x \left( 0 \right) - x \sin x + \cos x \]
\[ = - x \sin x + \cos x \]
\[ \]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) = 99x at x = 100
Find the derivative of f (x) x at x = 1
Find the derivative of f (x) = cos x at x = 0
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
\[\frac{1}{\sqrt{x}}\]
\[\frac{x^2 + 1}{x}\]
k xn
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
log3 x + 3 loge x + 2 tan x
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
xn loga x
(x3 + x2 + 1) sin x
\[\frac{2^x \cot x}{\sqrt{x}}\]
(1 +x2) cos x
sin2 x
(ax + b) (a + d)2
(ax + b)n (cx + d)n
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of x2 cosx.