मराठी

Differentiate of the Following from First Principle: X Sin X - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate  of the following from first principle:

 x sin x

उत्तर

\[\ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right) \sin\left( x + h \right) - x \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right)\left( \sin x \cos h + \cos x \sin h \right) - x \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{x \sin x \cos h + x \cos x \sin h + h \sin x \cos h + h \cos x \sin h}{h}\]
\[ = \lim_{h \to 0} \frac{x \sin x \cos h - x \sin x + x \cos x \sin h + h \sin x \cos h + h \cos x \sin h - x \sin x}{h}\]
\[ = x \sin x \lim_{h \to 0} \frac{\left( \cos h - 1 \right)}{h} + x \cos x \lim_{h \to 0} \frac{\sin h}{h} + \sin x \lim_{h \to 0} \cos h + \cos x \lim_{h \to 0} \sin h\]
\[ = x \sin x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}} \times \frac{h}{4} + x \cos x \left( 1 \right) + \sin x \left( 1 \right) + \cos x \left( 0 \right)\]
\[ = x \sin x \times \frac{- h}{2} + x \cos x \left( 1 \right) + \sin x \left( 1 \right) + \cos x \left( 0 \right)\]
\[ = - 2x \sin x \left( \frac{1}{2} \right)\left( 0 \right) + x \cos x + \sin x \]
\[ = x \cos x + \sin x \]
\[ \]
\[\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 2.09 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x at x = 1.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of f (x) = cos x at x = 0


\[\frac{1}{x^3}\]


\[\frac{x + 1}{x + 2}\]


 (x2 + 1) (x − 5)


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


tan2 


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x3 e


xn loga 


(x sin x + cos x) (x cos x − sin x


(1 +x2) cos x


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


\[\frac{x}{1 + \tan x}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{3^x}{x + \tan x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{x}{\sin^n x}\]


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×