Advertisements
Advertisements
प्रश्न
Differentiate of the following from first principle:
x sin x
उत्तर
\[ = \lim_{h \to 0} \frac{\left( x + h \right) \sin\left( x + h \right) - x \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right)\left( \sin x \cos h + \cos x \sin h \right) - x \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{x \sin x \cos h + x \cos x \sin h + h \sin x \cos h + h \cos x \sin h}{h}\]
\[ = \lim_{h \to 0} \frac{x \sin x \cos h - x \sin x + x \cos x \sin h + h \sin x \cos h + h \cos x \sin h - x \sin x}{h}\]
\[ = x \sin x \lim_{h \to 0} \frac{\left( \cos h - 1 \right)}{h} + x \cos x \lim_{h \to 0} \frac{\sin h}{h} + \sin x \lim_{h \to 0} \cos h + \cos x \lim_{h \to 0} \sin h\]
\[ = x \sin x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}} \times \frac{h}{4} + x \cos x \left( 1 \right) + \sin x \left( 1 \right) + \cos x \left( 0 \right)\]
\[ = x \sin x \times \frac{- h}{2} + x \cos x \left( 1 \right) + \sin x \left( 1 \right) + \cos x \left( 0 \right)\]
\[ = - 2x \sin x \left( \frac{1}{2} \right)\left( 0 \right) + x \cos x + \sin x \]
\[ = x \cos x + \sin x \]
\[ \]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x at x = 1.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) = 99x at x = 100
Find the derivative of f (x) = cos x at x = 0
\[\frac{1}{x^3}\]
\[\frac{x + 1}{x + 2}\]
(x2 + 1) (x − 5)
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
tan2 x
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x3 ex
xn loga x
(x sin x + cos x) (x cos x − sin x)
(1 +x2) cos x
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
\[\frac{x}{1 + \tan x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{x}{\sin^n x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.