Advertisements
Advertisements
प्रश्न
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
उत्तर
\[\text{ Let } x = 2\]
\[\text{ We know }:\]
\[2>1 \text{ and } 2<3\]
\[\therefore x>1 \text{ and } x<3\]
\[\left| x - 1 \right| = x - 1 \text{ and } \left| x - 3 \right| = - \left( x - 3 \right) = - x + 3\]
\[f\left( x \right) = \left| x - 1 \right| + \left| x - 3 \right| = x - 1 - x + 3 = 2\]
\[f'\left( x \right) = 0\]
APPEARS IN
संबंधित प्रश्न
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{2}{x}\]
\[\frac{x^2 - 1}{x}\]
k xn
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
\[\tan \sqrt{x}\]
\[\frac{2 x^2 + 3x + 4}{x}\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
x3 sin x
x5 ex + x6 log x
(1 +x2) cos x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x4 (5 sin x − 3 cos x)
(2x2 − 3) sin x
x5 (3 − 6x−9)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{x}{\sin^n x}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Find the derivative of f(x) = tan(ax + b), by first principle.
`(a + b sin x)/(c + d cos x)`